v<a AUTODESK

Post Processor Training Guide

For use with Fusion 360 CAM, Inventor CAM, HSMWorks

CAM Post Processor Guide 8/8/23
Copyright © 2018-2022 Autodesk, Inc. All rights reserved.

Table of Contents

1 INtroduction t0 POSEt PrOCESSOISc.ccuiiieiiiiieiirieisie sttt 1-1
R T o L= TSRO P PSPPSR 1-1
1.2 What IS @ POSE PIOCESSOI?vcviieiieieieeesieieiesie s et s s et s ee s seseesestesaesesseneasesaesessensesensenens 1-1
1.3 FiNAING 8 POSE PIrOCESSON ...ttt bttt 1-2
1.4 Downloading and Installing @ POSt PrOCESSONuceiiiiiieirieieisieienesieie et 1-3
1.4.1 Automatically Updating Your POSt PrOCESSOIScoeiveiieririerieiieie st 1-6
1.5 RUNNING the POSE PIOCESSOIvvivieiiciieiieieieieie ettt sb e bbb bbb resnenne s 1-6
1.5.1 POSE ProCeSS DIAIOQYcuieuieiieiieiieieeee e et r e 1-7
1.5.2 NC PIOGIAIMSeeveiiieieeiesiesie st e e e e e e e e e s e e e n e s e nenen e e e nennes 1-11
1.5.3 Maching CONFIQUIALIONSoueiiiiiiiisieiisie ettt 1-13
1.6 Creating/Modifying @ POSt PrOCESSOTc.ccuiuiiieiiiieieiriee e 1-16
1.7 Testing your Post Processor — BENChMark PArtS ..o 1-17
1.7.1 Locating the BenChMArk PartS..........c.ccooeiiriiiieiseneeses e 1-18
1.7.2 Milling BenCRMArK Part...........coviiioiieeeeee e s 1-19
1.7.3 MIll/Turn BenChmark Part...........cooiiiiiece e 1-20
1.7.4 Stock Transfer BENChMArK Part ..o e 1-21
1.7.5 Probing BenChMArk Part..........ccciiieiiiiieieiesesese st 1-22

2 Autodesk Post Processor EITOr..........ccoiiiiiriinineiesesieesees et 2-23
2.1 Installing the Autodesk Post Processor EITOr..........ccviiiiiiiininiiecce e 2-23
2.2 Autodesk POSt PrOCESSON SETIINGS.cvviiriiirietirisieeriet ettt 2-26
2.3 LETE SIAR FIYOUL ...ttt 2-29
2.3 L EXPIOTEE FIYOUL......ocviniiiiiiieteee e bbbttt 2-29
2.3.2 SEAICN FIYOUL......oiiiiiiiiecece ettt e et e st et et e e e e e e s 2-31
2.3.3 BOOKMAIKS FIYOUL.....c.oiiiiiiiiiecese e bbb bbb b ea e reens 2-34
2.3.4 EXTENSIONS FIYOUL ..ot bbb e reens 2-34
2.4 Autodesk Post Processor EQItOr FEAUIEScc.civierieirerieisiesesiesieestesie e sees e sesse e asseseesessenens 2-35
2.4.1 AULO COMPIBTION ...ttt bbbttt 2-36
2.4.2 SYNTAX CNECKING ...ttt bttt bbbttt 2-36
2.4.3 HidiNg SECIONS OF COUEcviiiiiiciecie e ens 2-37
2.4.4 MALCING BIaCKELSoeeiiiieieieeeeee ettt sttt st 2-37
2.4.5 GO 0 LINE NUMDET ... et 2-38
2.4.6 Opening a File in a Separate WINUOWccccviiiiiiiiniie et 2-38
2.4.7 SNOICUL KBYS ..ottt et e et e e s e s et e e e et et e e et e e nes 2-38
2.4.8 RUNNING COMMEANTUS......itiiiiiiiiieiiesiesiesie sttt st st b besbesbe st sbesbesbesbesbesbesbesbesbenreerenns 2-40
2.5 RUNNING/DebUGQING the POST ..o 2-40
2.5.1 Autodesk PoSt Processor COMMANTS.........cuiueiieririnieiniesieesie st sens 2-40
2.5.2 The POSE ProCESSOI PrOPEITIEScviveeiiiteiiieieiisisieeste ettt 2-41
2.5.3 RUNNING the POSE PrOCESSONiviiiiiiiiieiiesie sttt sbe bbb e sre e ens 2-42
2.5.4 Creating Your Own CNC Intermediate FileSccoovviiiiiiiiiiiiiiiie e 2-44

3 JAVASCIIPL OVEIVIEW.....cuiiiiiiieiiciesieeie ettt ettt e a e 3-45
3.1 OVBIVIBW ...tttk bbbt b b bbb bbbt e bt b et e bbbt bt e bbbt b e n et 3-45
AN V- R 1ol] 0 0]V 1 - PRSPPSO 3-45
TR Y 4 =1 o] LRSS 3-47
TR 00 I N 1144 T SRS 3-48

4 AUTODESK cAM Post Processor Guide 8/8/23

Table of Contents

BTG I £ [0 TR 3-49
3.3.3 BOOIBANS. ...t bbbt e et et 3-51
TR N 1 - £ TP 3-51
B.3.5 ODJBCES .ttt bbbt bbbt 3-53
3.3.6 THE WVECION ODJECT ...ttt 3-53
3.3.7 The MALFIX ODJECT ...cuveieieiesee e bbb bt e bbb 3-56
3.3.8 Deferred VariabIes ..o bbb 3-59
KB g o] (=TT 0] 3TN 3-61
3.5 ConditioNal StALEMENTScviiiiiieeee e e bbbt b e s bbb e aesresrenre s 3-63
3.5, L The If STAEMENT ...ttt b ettt e e e e e re s 3-63
3.5.2 The SWILCH STAtEMENT ... s ere e 3-64
3.5.3 The Conditional OPEIAtOr (7)oviereeerieeeierieiesie ettt 3-65
3.5.4 THe tYPEOT OPEIALON ...ttt ettt b et e be e 3-66
3.5.5 The conditional FUNCHIONccoiiiice e e 3-66
BT I 1V o (o TR 3-67
3.5.7 The validate FUNCHION........cciiiieee et e 3-67
3.5.8 CompParing REAI VAIUESc.coiiiiieieeee e bbb 3-68
3.6 LOOPING STALEMENTScvieeiieieieieeie ettt sttt bt e b e bt b e e e e s be e nenbe e nnns 3-68
3.8.1 THE TOF LLOOP .ttt bbbttt 3-68
3.6.2 TNE TOI/IN LOOP ettt bbbttt 3-69
3.6.3 THE WHIIE LOOP .veeeieieiceeee ettt b bbb et e 3-69
K S I 4 T= 0o [0V T N 1o T IR 3-70
3.6.5 The Dreak StAtEMENT..........ooi ittt 3-70
3.6.6 The CONtINUE SEAEMENTcooiiiiicececececec e sae e eaeens 3-70
T A V] T €] R 3-71
3.7.1 The fUNCLION STAEMENT ..o e et ereens 3-71
K@% L] [T To I W (1] Tt o] 3-72
3.7.3 TNE retUIN STALEIMENT......eiiieieeee ettt et sn et 3-72
4 ENINY FUNCHIONS....oiiicece ettt n s 4-73

€ o] o1 I T=Tox 1 o] o OO 4-74
I I =T 0 T=] BT 1 T LSOO 4-75
4.0.2 PrOPEITY TaBIE ..ottt ettt e et 4-77
R e 0T o 1T YRS ol o] LT TSSO R TP 4-81
O A @ o 1= - U o] I o €0 0=T L PR 4-82
4.1.5 PrOPEITY GIOUPS ..eeeeueeieeieeuieeeee e eeste s ettt ettt et e e b e b et e b e b et e b et e b et et e b e b et et e e et e e s 4-83
4.1.6 ACCESSING PrOPEITIES ...vcveierieiiieiesie ettt sttt sttt et e e e st e e enenteneas 4-85
O A oY 0 Ll D 1=] T] 4-86
4.1.8 Deprecated FOrmat SPECITIENSccviiiiiiieieiee e 4-89
4.1.9 Output Variable DefiNItiONScccoviiiiiiiiese e 4-90
4.1.10 Deprecated Output Variable Definitions ..o 4-94

4. 1.1 MOTAI GIOUPS....eeuieeteiiieeieie ettt bbb bbbttt bbbt 4-95
4.1.12 FIXEU SEELINGS ...ttt bbb bbbt bbbt 4-98
4.1.13 COlIECTEA SLALE.......cveieieieieiee ettt se et e et et et e seesn et e e e nrenenes 4-99
Ao 010 o 1= o [PPSR 4-99
4.2.1 Define Settings Based 0N POSt PrOPertieS........cccccviiiiiiiiie i 4-99

I

4 AUTODESK cAM Post Processor Guide 8/8/23

Table of Contents

4.2.2 Define the Multi-AXiS CONFIGUIALION.........cccoiiiiiiiiie e 4-100
4.2.3 Output Program Name and HEAETccoieiieiiiiieriieesesesese e 4-100
4.2.4 Performing General CRECKS. ... 4-105
4.2.5 Output INitial STArTUP COUES ..o 4-106
o 1S T=Tod 1 T o SRS 4-106
4.3.1 Ending the Previous OPEratioN..........ccccueieieiierierieieiesese sttt 4-107
4.3.2 Operation Comments and NOTESccueiiieiiiiieieice e 4-108
G R T o To N O o=V o T PSPPSR 4-110
4.3.4 Work Coordinate SYStem OFFSELS........couriririiiiieirre e 4-113
4.3.5 WOrK Plane — 342 OPEIatiONSciviiriiiiieiiisieie ettt 4-115
4.3.6 INITHAI POSITION ..o.vcviiicicee ettt e e eeneseene e 4-125
4.4 THE SECLION ODJECT......eiieeeeieietieteee ettt r ettt e st e b e e sesbe e eseseene e 4-126
o R oL =101 =T od 1 o] USRS 4-126
A.4.2 QEESECTION ...ttt bbbttt e bt et e s e bt e st et e e s e e e e e ne et neenes 4-126
4.4.3 getNUMDEIOTSECLIONS.oiiieeee e bbb bbb nre e 4-127
BAL QLI .o bt bt b e bbb bbb 4-127
4.4.51STOOICHANGENEEUEA........c.eeieieee bbb e 4-127
A.4.6 ISNEWWOTKPIANE ..ottt sttt snene st 4-128
447 ISNEWWOTKOTTSEL......eueeiiieeiceseises sttt st se e nenaenea 4-128
4.4.8 1SSPINAIESPEEADITIEIENT ...t 4-128
A4.4.9 1SDIHINGCYCIE .ottt b e s 4-128
A4.4. 00 ISTAPPINGCYCIE. ..ottt a bbb e es 4-129
4.4. 11 ISAXIAICENTEIDIIING .c.viieieeee e ere e 4-129
4412 ISMIIINGCYCIE ...ttt 4-130
4.4.13 ISPrODEOPEIALIONcuiiiieiiit ettt bbbt bbbttt 4-130
4.4.14 1SINSPECLIONOPEIALIONevieeciiieieiee bbbttt 4-130
4.4.15 i1SDEePOSIIONOPEIALIONoveieieieieie e e sr e erenre e 4-131
4.4.16 ProDEWOIKOTTSEL......cviiecieee e e bbb ere e 4-131
A.4.17 QEINEXITOO! ...t b et e b et e st et et et e e e e s 4-131
44,18 GEIFIISTTOON ...ttt 4-132
RS N (00 A - T Lo TSP 4-132
O O (=1 (=])T URRTR R 4-132
A.4.21 CRECKGIOUP. ...vieetieieieeete ettt sttt sttt b et e st e e et e e e s e e ae e nbeseene e 4-132
o] N T=Tod 1T] = o OSSR 4-133
0 14 [0 - O RSPRSPS 4-134
A7 ONTEIMINGLE ...ttt bbbtk bbbt b bRt e bt b b et et b st b n s 4-135
4.8 ONCOMMANG ...ttt bbbtk bbb b e b st b bt e b b e bt s b et e b b et e b nnenes 4-136
4.9 ONCOMIMENT......eeieieieeee et e e e b s b bbb e b e b e R b e b e b e e bt e b e e b e b e e b e nr e nb e b nrennenne s 4-137
A.L0 ONDWEIL.....oeeee ettt ettt R e et be e R et ne e e nennenes 4-138
A.10 ONPATAIMETET ...ttt ettt ettt b e e bt s bt e bt ekt e bt s Re e sh e e b e ebe e b e ebeebenbeennenneens 4-139
4.11.1 getParameter FUNCLION ..ot 4-140
4.11.2 getGlobalParameter FUNCHIONcoiiiieciece e 4-141
4.12 ONPASSTRIOUGN ... bbbttt sa et a e e 4-142
4.13 ONSPINAIESPEEA ... ettt e e b e et et et e b et e e e ee e 4-142
4.14 ONOTIENTAIESPINAIR ... bbbt 4-143
4.15 ONRAAIUSCOMPENSALION.c.eviiiiiietiiiieieert ettt b ettt b et 4-143
i

4 AUTODESK cAM Post Processor Guide 8/8/23

Table of Contents

4.16 ONMOVEMENT ...ttt e e nne s
A.17 ONRAPI ..ttt ettt r e n e
4.18 INVOKEONRAPI ...t
4.19 ONLINEAT ...ttt e e e et st e s et e b et e s e s et et e s eneneas
4.20 INVOKEONLINEA ..ottt ettt nenenene e
4.21 ONRAPIADD ...ttt
4.22 INVOKEONRAPIASDcuviiieiieieieeieeee ettt
4.23 ONLINEAISD ...ttt ettt sttt b n
4.24 INVOKEONLINEAISDc.ooiieiciciceeeee ettt sttt
4.25 ONCITCUIAN.....c.vivieeiceeceee ettt ettt a et e aene e
4.25.1 Circular Interpolation SEttiNgscccccerrreririreineee e
4.25.2 Circular Interpolation Common FUNCLIONS..........ccccooviennienerneneeee e
4.25.3 Helical INterpolationccooiieirineise e
4.25.4 Spiral INterpOIationcccoeieiiiireees e
4.25.5 3-D Circular INterpolationccceveieieieieieieseeee e
4.26 INVOKEONCIICUIAT ...
A.27 ONCYCIE oottt ettt ettt et e e
4.28 ONCYCIEPOINT. ...ttt ettt ettt en s
4.28.1 Drilling CYCIE TYPES...cvciiiieieirieieisieiesiee e
4.28.2 CYClE PAFAMETETS......ceiuiieteiiieieee et
4.28.3 The Cycle Planes/HEIGNLS.......cccoviieiicecieeeeee e
4.28.4 Common CyCle FUNCLIONSccvcveieieieieieieiesie e
4.28.5 Pitch Output with Tapping CYCIEScovvieiiiieceeeeee e
4.29 ONCYCIEEND. ...
4.30 ONREWINAMACHINE......c.oiieiciceceee e
4.31 COMMON FUNCLIONScuviviiricticieceeeee ettt ettt
A 3L L WIEEIN e s
4.31.2 WITEEBIOCK ... e
4.31.3 TOPIECISBUNIT ...ceiiieieteiee e e
O I (0] o SRS
4.31.5 WITEEREIIACT ...

5 Manual NC COMMANTS........coceiiiiriiirieieiiee e e
5.1 onManualNC and expandManualNCcccceviiiiiiniinieeeee e
5.1.1 Sample onManualNC FUNCHONcociiiiiiisiceee e
5.1.2 Delay Processing of Manual NC Commands...........ccccocereivrerenieneienenennens

5.2 ONCOMIMANG......eiieiiiieieieiieise ettt et sb et st ere b neere s
5.3 ONPATAMEIET ...t
5.4 0NPASSTRIOUGN.......oiiiiiiiiece e

B DEDUGGING ..eiitiieiiiceee et r s
8.1 OVEIVIBW ...ttt bt bbbttt bbb e
6.2 The dumpP.CPS POSE PrOCESSONccuviviiiiiiiciieiieie st
6.3 Debugging using Post Processor SEttiNgScccveveieiieieiieieeiesieieiesesie e

6.3.1 dEDUGIMOTE ...
6.3.2 SEIWIIEINVOCALIONS.veveeieieeccieiete e e

4 AUTODESK cAM Post Processor Guide 8/8/23

Table of Contents

8.4 .4 WWETEC OMIMENT ..ttt ettt e e ettt e e e et ee e et eeeeesateeeesaasaeeessasseeeesaneeeessanseeeesannneeesaanes
B.4.5 WITEEDEDUG ...t e et et e e e e et ettt e n s

7 MUILI-AXIS POSE PrOCESSOIS.....cueviieiirieieiesie sttt 7-188
7.1 Adding Basic Multi-Axis Capabilitiesc.ccciiiiiiiiiiiccccceee e
7.1.1 Create the Rotary AXeS FOIMALSccvciiiiiieiicece ettt
7.1.2 The Machine Configuration Settings and FUNCLIONS..........ccooeiriiinreieresee e
7.1.3 Creating a Hardcoded Multi-Axis Machine Configuration...........cccccocvvvnieninienenienenenene,
7.1.4 Calculating the ROtary ANGIES.........cooiiiiiiiii e
7.1.5 Output Initial ROTAry POSITIONcciiiiiieiceceseees e
7.1.6 Create the onRapid5D and onLinearSD FUNCIONSccccvrieiieinenieesee e
7.1.7 Multi-AXiS COMMON FUNCHIONS.......couiiiiieirieisesie et
7.2 Output of Continuous Rotary Axis on a Rotary Scale ..o
7.3 Adjusting the Points for OffSet ROLANY AXEScoicviiiiiiiiieieie s
7.4 Calculation of the Multi-AXiS TOOI POSITIONccoiiiiiiiiiiisisese e
7.5 Handling the Singularity Issue in the POSt PrOCESSONccveiirieiinieeniiee e
7.6 Rewinding of the Rotary Axes when Limits are Reached ...
7.7 MUIEI-AXIS FEEATALES ..ottt re sttt e e se st e sesee e e seneenenaenennens
7.8 POIAr INTEIPOIALIONveiiiicii et e et e st et e s e e e ne e
7.8.1 Polar Interpolation FUNCIONScoiiiiiiiie e
7.8.2 Manual NC Command to Enable Polar Interpolation...........ccccccoeveveieienenesececesesens
7.8.3 Calculating the Polar Interpolation Initial Angle ...
7.8.4 Initializing Polar INterpolation ...
7.8.5 Disabling Polar INtErpOlationcccooveiiiiiiseee e
7.8.6 Enabling Polar Interpolation in Drilling CYCIES........ccccviiiiiiiiiiiese e

8 Adding SUpport fOr ProDING.......ccoieiiieiseee e 8-220
8L WWECS PrODING ..ottt sttt b et st b et et e s e st e e e be b e seebe e enenanneas
8.1.1 ProDING OPEIatiONS......ccueeeieieuerieeeiesieseete e e et e et tesee e s teseesesbe e sbeseesessessenesseseenessenens
8.1.2 Adding the Core Probing LOGICcccovieiriieisiese e
8.1.3 Adding the Supporting Probing LOGICcciuiiriiiiiiiniie st
8.1.4 Adding Support for Printing Probe RESUILS ...
8.2 GEOMELIY PrODING.....i ittt ettt et b e n e
8.3 INSPECT SUMTACE........ccueiiieietiietet bbbt bttt bbb bbbt et
8.3.1 INSPECt SUITACE OPEIALIONScveuiieeiiieieiiresie sttt
8.3.2 INSPECLION PATAMETETS ...ttt ettt
8.3.3 Adding the Core INSPECt SUITACE LOQIC......ccciiiiiiiiiiiie et
8.3.4 Adding the Supporting INSpect SUrface LOGICcccvvviiiiiiiiiiie s

9 Additive Capabilities and POSt PrOCESSOIS........coveuiieieieieieieriesiesiesieseeseeseesieeas 9-239
0.1 GEtlING STAMEAe.veveciee et b e e se e e e s e e b et et et et e e e s e nenennens

4 AUTODESK cAM Post Processor Guide 8/8/23

Table of Contents

9.1.1 FINAING @ MACKNINE ..ottt e bbb b bbb e eneens 9-240
9.1.2 Creating an AdItIVE SEIUP......oiiiiiiiice e b e sreens 9-243
9.1.3 Creating and Simulating an Additive OPErationccoceoerreerneiennenee e 9-246
9.2 Creating a New Machine Configurationccooeerieinieiinesee e 9-248
9.3 Additive COMMON PrOPEITIEScueiieiiiiieiiisieisisie ettt 9-249
9.4 AAAITIVE VATADIES ... bbb 9-250
9.4.1 The machineConfiguration ODJECT........c.ccciiiiiiiiiieicecee e 9-250
I I (Lol = ([0 LT R @ o] Tt 9-251
9.4.3 The COMMANTS ODJECToueuiiiieiisieire bbbt 9-251
9.4.4 The SELtINGS ODJECT......cuiuiiiieisiee bbbt 9-252
9.5 AdditiVe ENIY FUNCLIONScuiiiiiiiiciisiees bbbt 9-253
TN € o] o 1 I T=Tod 1 o] o ISR 9-254
TR o 1@ o 1= o PO 9-255
TSI o o =T 0! 1 o o OO URSORRS 9-255
0.5.4 ONCIOSE ...ttt bbb bbb e bbbt 9-256
RN o 0] =T=To =T 1o ISP 9-256
0.5.6 ONEXITUAEI TRMIP ..ttt e et e et e s e s e s et e s et et e e s 9-257
9.5.7 ONEXITUARICINANGE. ...ttt ettt sttt sttt ne bt enenaenen 9-258
9.5.8 ONEXITUSIONRESEL ...ttt sttt st e e b e eneesessenenseneenenaenens 9-258
9.5.9 ONFANSPEEU ...ttt bbb bbbttt 9-259
9.5.10 ONACCEIBIAIION.ouiieeiiste et bbbt bt eb et 9-259
9.5.11 ONMAXACCRIBIALIONcuiiiieiicieee et r st nae e 9-260
9.5.12 ONJBIK ..ttt bbbt 9-260
0.5.13 ONLAYET ..ot 9-261
0.5.14 ONPAIAMETET ...ttt b bt e et b e ettt e b e ebe e bt e e e b e e e nne e nne s 9-261
9.5.15 ONRAPIU. ...ttt bbb 9-262
9.5.16 ONLINEAIEXIIUTEcvieeiiieieiee ettt ettt bt se e 9-262
9.5.17 ONCIICUIAIEXITUAR ...ttt 9-263
9.6 ComMMON AdAITIVE FUNCIONS.......cuiiiiiiiieieieieriee et 9-264
0.6, 1 GEEEXITUGRT ...ttt bbbttt bbbt 9-264
0.6.2 ISATITIVE ...ttt bbbt b et b ettt e e nne e 9-264
0.6.3 eXECULETEMP T OWEIFEALUIES.....c.vi ettt st nb s 9-264
10 Deposition Capabilities and POSt ProCESSOIScccovierierierierieieieriesiesie e 10-265

10.1 GELLING SEAMEUecveciieiicicieeeee ettt e e e e b et e b e a et e s e aenennan 10-265
10.1.1 FINAING @ MACKHINE ..ottt 10-266
10.1.2 Creating an Additive Setup for DePOSITIONccoieiririririeireeesee s 10-268
10.1.3 Creating and Simulating a Deposition OPeration ... 10-270
10.2 The Deposition Sample POSt PrOCESSON........cviiiiiieieieieieesie st siesie et 10-272
10.3 Deposition SPECITIC FUNCLIONSccviiiiieieieieieie e 10-272
10.3.1 Deposition COMMON PrOPEITIEScveviieieieieieiee ettt 10-273
10.3.2 DepOoSitioN COMMANDS.........euiirieiiirieieirieie sttt 10-273
10.3.3 Modifying Existing Functions to SUpport DepOSITIONcc.ceverreernriennieensiee e 10-274
VI

4 AUTODESK cAM Post Processor Guide 8/8/23

1 Introduction to Post Processors

1.1 Scope

This manual is intended for those who wish to make their own edits to existing post processors. The
scope of the manual covers everything you will need to get started; an introduction to the recommended
editor (Autodesk Fusion 360 Post Processor Editor), a JavaScript overview (the language of Autodesk
post processors), in-depth coverage of the callback functions (onOpen, onSection, onLinear, etc.), and a
lot more information useful for working with the Autodesk post processor system.

It is expected that you have some programming experience and are knowledgeable in the requirements
of the machine tool that you will be creating a post processor for.

1.2 What is a Post Processor?

A post processor, sometimes simply referred to as a "post”, is the link between the CAM system and
your CNC machine. A CAM system will typically output a neutral intermediate file that contains
information about each toolpath operation like tool data, type of operation (drilling, milling, turning,
etc.), and tool center line data. This intermediate file is fed into the post processor where it's translated
into the language that a CNC machine understands. In most cases this language is a form of ISO/EIA
standard G-code, even though some controls have their own proprietary language or use a more
conversational language. All examples in this manual uses the ISO/EIA G-code format.

CAM Intermediate Toolpath Post Processor G-code File

303: onRapid(3.6811023622047245, function gnRapid x. v._2) { : N36 GO0 N3.6811 Y-1.3061 Z.63
-13960629350816007, varx = 50uput format(x=); N37 Z.2362
0.6100211508415107) vary = yQuiput format v); N38 GO1 Z0 F39 37

304: gnRapid(3.6811023612047245, var.z = z0utput format(=z); N30 X-3 6811
-1.3960629360816007, writeBlockigMotionModal format(0),
0.23622047244004488) %V, Z);

305: gnMovemsnt, feedQuiputreset(:
(MOVEMENT LEAD IN) }

305: gnlLinear(3 6811023622047245,

-1.3960629360816007,

0,

30.370100366737646)
306: gnhovement(FINISH CUT)
306: gnlinear(-3.68110236220472,

-1.3960629360816007.

0,

30.370100366737646)

If you would like a bit more information on the G-code format the CNC Handbook contains a lot of
useful information including a further explanation of the G-code format in Chapter 5 CNC Programming
Language.

Though most controls recognize the G-code format the machine configuration can be different and some
codes could be supported on one machine and not another, or the codes could be interpreted differently,
for example one machine may support circular interpolation while another requires linear moves to cut
the circle, which is why you will probably need a separate post processor for each of your machine tools.

Introduction to Post Processors 1-1

4 AUTODESK cAM Post Processor Guide 8/8/23

https://www.autodesk.com/campaigns/fundamentals-of-cnc-machining

1.3 Finding a Post Processor

The first step in creating a post processor is to find an existing post that comes close to matching your

requirements and start with that post processor as a seed. You wi

Il never create a post processor from

scratch. You will find all the generic posts created by Autodesk on our online Post Library. From here
you can search for the machine you are looking for by the machine type, the manufacturer of the

machine or control, or by post processor name.

Post Library for Autodesk Fusion 360

Make sure to read this important safety information before using any posts

Find your post here

HAAS (pre-NGC)
@ Download # Sample # Share 7 RSS

This is the place to find post processars for common CNC machines and controls

¥ | Any time ¥ || Any vendor v

Other places to check for a post processor include the HSM Post

Processor Forum or HSM Post

Processor ldeas.

It is possible that Autodesk has already created a post processor for your machine, but has not officially

released it yet. These posts are considered to be in Beta mode an

d are awaiting testing from the

community before placing into production. You can visit the HSM Post Processor Ideas site and search

for your post here. This site contains post processor requests from users and links to the posts that are in
Beta mode. You can search for your machine and/or controller to see if there is a post processor

available.

4 AUTODESK cAM Post Processor Guide 8/8/23

Introduction to Post Processors 1-2

https://cam.autodesk.com/hsmposts?
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent

Search This Ideas Board

<

Q Biesse Woodworking Router
using CIX Format

Dizcoe

(] LR

Results:

turn off suggestions

Searching For a Post Processor on ldeas or the Forum

Biesse Woodworking Router using CIX Format
10-18-2017 05:23 AM | 8 Comments (8 New)

1 Vote Hello all,

We are working on a generic post processor for the Biesse Woodworking Router with CIX Format..
We would be happy to get some feedback from you before we put them into production.

Feel free to download and test this post processor and provide any feedback you might have.

Biesse CIX ¢

Beta Post Processor Found on HSM Post Processor ldeas

If your post processor is not found, then you should search the HSM Post Processor Forum using the
same method you used on the HSM Post Processor Ideas site. The Post Processor Forum is used by the
HSM community to ask questions and help each other out. It is possible that another user has created a
post to run your machine.

You should always take care when running output from a post processor for the first time on your
machine, no matter where the post processor comes from. Even though the post processor refers to
your exact name, it may be setup for options that your machine does not have or the output may not be
in the exact format that you are used to running on the machine.

1.4 Downloading and Installing a Post Processor

Once you find the post processor that closely matches your machine you will need to download it and
install it in a common folder on your computer. If you are working on a network with others then this
should be in a networked folder so everyone in your company has access to the same library of post
processors.

Introduction to Post Processors 1-3

4 AUTODESK cAM Post Processor Guide 8/8/23

https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218

Configuration Folder
C:WYZ Post Library [
Post Configuration
[haas umc-750.cps - HaAs UMC-750 =] [a +| [Openconfig |
Qutput folder NC extension
e O
Program Settings
Program name or number N ty Val o
roper alue
1001 Pe F
(Built-n) allowHelicalMoves Yes E
Program comment (Built-n) highFeedMapping Preserve rapi... 1
Program Comment (Built-n) highFeedrate 650
({Built-n) maximumCircularRadius 1000
Unit (Built-n) minimumChardLenath 0.01
[Domment unit -] (Built-in) minimumCircularRadius 0.01
(Built-in) tolerance 0.002
|| reorder to minimize tool changes chipTransport Mo
Open NC file in editor for(.:eHomeOnIndemng ‘Yes
optionalStop Yes -
Search for posts in our online post librar ’ Post] ’ Cancel

Selecting the Local Post Processor Folder

When using Fusion 360 it is recommended that you enable cloud posts and place it in your Asset
Library. This way post processors, tool libraries, and templates will be synched across devices and users
at a company.

F Autodesk Fusicn 360 - - (== Y]
oo @ B8 e O Ko
=~

Back> W PostPro..ling MM X | + AutodeskAccount |
FRUJELTS [e — o n_m Preferences
—_— e > -
LIBRARIES [° preferences - .- - - Switch Hubs »
Wy Profile
4 General i Preferences controlling general CAM behavior B
= Assets AP @ Sign Out
[_ | : .
Project that contains assets used by Fusion 360 Design External editor E]
including templates, libraries, and other r Render L
configuration files [cAm § :_:l e Enable Cloud Libraries <:°
Drawing
Simulation
SAMPLES Waterial CAM Browser Display Properties
Mesh Show tool number
Basic Training Graphics Show tool compensation offsets [
= Network
Samples used in the Hands-on exercises in our Data Collection and Use Show tool description [7]
Help topics 4 Unit and Value Display Show setup work offset and spindle [
Simulation Show cycle type
@ CAM Samples “ ”E"E'W""s Show manual NG
esign
Samples demonstrating CAM functionality. CAM Show pattern type
http:fautode. skf360cam Simulation
Preview Prompts
Design Samples Confirm generation when already valid
Samples of completed Fusion designs Automatically generate toolpath o operation change

- Simulation Samples
Samples demonstrating Simulation functionality.

Workshops & Events

Samples used for Autodesk sponsored
‘Workshops & Events

¥ 4

Filter

Enabling Cloud Post Processors in Fusion 360

Introduction to Post Processors 1-4

»4 AUTODESK cAM Post Processor Guide 8/8/23

§ —
[Autodesk Fusion 360

< i Assets o

l Data | Feople l

=«

—

Bl CAMPosts il CAMTemplates

Bl CAMTools

Double Click the CAMPosts Folder and then Press the Upload Button

Once you have uploaded your post(s) to the Cloud Library you can access these from Fusion 360. You
do this by pressing the Setup button in the Post Process dialog and selecting your post from the
dropdown menu.

_
(D pomorocem
|
)
| haas ume-750.cps - HAAS UMC-750
Output folder NC extension
C: Ysers\AppOata\L ocalFusion 350 CAMYNG @ B3 Open Fokder
Redrash F5
g s | e Ot ol
Program name of number f Add Cascading Post
1001 fait)
| (Bultn) Alow helical moves - <
Program comment | (Buitn) Hgh feedrate mapping
ALLISON C2 HUB HOLES | (Butn) Hgh feedrate
| (Buit-n) Maximum cradsr radus 1000
Uit ‘ (Busit-n) Minmum chored length 0.0%
[Mun w| | (Bultsn) Minmum croular rades 0.01
g : (Buit+n) Tolerance 0,002
["IReorder to mnimze tool changes | Use dw transpoet No -
(7] Open NC file in editor lFutehw\tm:a\mmw Yes s
! 2 2 | Optonal stop Yes -

Selecting Your Post from the Cloud Library

Introduction to Post Processors 1-5

»4 AUTODESK cAM Post Processor Guide 8/8/23

In all cases you will want to avoid placing posts in the production install folder as these can be
overwritten when HSM is updated. Downloading your posts to a separate folder means that you can
reduce your list of post processors that show up in the Post Process dialog to those that you use in your
shop.

1.4.1 Automatically Updating Your Post Processors

It is possible to have Fusion 360 automatically search for the latest versions and additions of post
processors and machines when they become available. This is accomplished by checking the
Automatically get latest Post and Machines in the Preview section of the User Preferences.

© 4 O|J

Autodesk Account

F {1
I Pr]}Jeren ces

Wy Profil
~ (General | Preferences to try Preview Functionality SPECT v SELE ¥ retie
AP &8 Refer a Friend
Dezign Try out Fusion 360's preview features. The Fusion 360 team welcomes your questions and feedbadk on £ @ Sign Out
Manufacture forums, so we can continue improving them. -
¥ Electronics Click the box next to a preview feature to enable it. Preview features are considered “prerelease” features under the Autodesk Terms of Use, which
Color govern your use of Fusion 360,
Cirill
inctorsces | [0] [B] [O o eI@Q) | essien
Reset Grid
Directory ¥ Manufacture
Render This section controls optional and pre-release behavior within the Manufacture workspace.
Drawing a
Simulatien and Generatei:. ¥ Automatically get latest Posts and Machines
E‘.qud.t‘.red fts The Fusion 360 Library section of the Machine Library and the Post Library gets updated with the latest versions and additions of posts
Waterial and machines when they become available. Checks for updates occur each time you restart Fusion 380,
w Graphics
ROP Optimization ! nc-program-auto-post
Network Enables automatic post of MC Code. NC Code is generated whenever the NC Programs dialog is exited with OK. (INTERMAL TESTING)
Data Collection and Use L3
~ Unit and Value Display _J Pattern instance control
Simulation and Generative Design Allows posting the first instance of a pattern through the NC Program dialog.
v Default Units
Design [#) Post Process NC code with legacy post processing dialog
Electronics Revert back to the older style post processing dialog if you are experiencing problems with the new NC Program post processing interface,
Manufacture Learn More
Simulation and Genegative Desj .
Preview Features é a) post-processing-use-relative-path
Enables post processor relative output path usage. (INTERMAL TESTING)
Restore Defaults Apphy oK Cancel

Selecting the Post Process Dialog in Fusion

1.5 Running the Post Processor

The post processor can be run from the Post Process dialog or from an NC Program in Fusion 360. You
can either select the Post Process button or right click on an Operation/NC program and select Post
Process from the menu. Multiple operations can be selected and post processed in a single operation.

Introduction to Post Processors 1-6

4 AUTODESK cAM Post Processor Guide 8/8/23

IICPrograka

E 4
E T Simulate | B Compare and Edit
7 S te Generate - .) N = q & simuiate
@ E E% @ Toolpath w Stock Simulation > 4[] Post Process /
— [Open NC Output Folder
ACTIONS ¥ Toolpath w5 Post Process -
Fusion Inventor HSMWorks Right Click

1.5.1 Post Process Dialog

Fusion 360 uses the NC Programs dialog as its interface to the post processor, while Inventor CAM and
HSMWorks use the legacy Post Process dialog. The display of the Post properties in the NC Programs
dialog is more advanced, as it respects the group names from the property table and displays them in

collapsible tabs.

E MC Pregram: NCProgram3 X
Settings | Operations ©~
Machine and post Post properties
Use machine configuration ~ Preferences
Pos RS-274D Sample Multi-axis Post Processc - ¢ [

o P - Optional stop
Use cascading post preload tool
Program » Safe retracts and home positioning
Name/number 2001 o
i v | Multi-axis
File name 2001
. Safe retract distance for rewinds | 0
Comment This is my comment
: _ Preposition rotaries
Output folder ydesk\Documents\Fusion 360\NC Programs #2 r
Use GE8.2
Post to Fusion Team
. » Formats

NC extension nc

Unit Document unit » Built-in

Open NC file in editor

Create in browser

Post Cancel

Fusion 360 Post Process Dialog

Field Description

Use machine configuration

Check this box to assign a Machine Configuration to the post
processor. Typically you would assign a Machine Configuration
to the Manufacturing Setup in Fusion 360. If a Machine
Configuration is assigned to the Manufacturing Setup, then this

4 AUTODESK cAM Post Processor Guide 8/8/23

Introduction to Post Processors 1-7

Field

Description

box will be checked and the Machine Configuration will be
displayed below this field.

Post

Specifies the post processor you want to run. The dropdown
arrow in this field will display a list of recently used post
processors. Pressing the ® button will open a popup dialog that
includes a list of linked folders and available posts that you can
select from. The # button allows you to edit the post processor.

Use cascading post

Used to select a cascading post. A cascading post is usually a 3
party post processor or verification program that is run after the
Fusion 360 post processor.

Name or number

The name/number of the program. This name/number will
usually be output as the first line of the NC file, usually as an
Oxxxx code when a number is required or as a comment (XXXXx)
if a name is allowed. The post processor controls whether an
alphanumeric name is allowed in this field or if a number must
be entered. This is defined by the programNamelsinteger =
true; statement in the post processor and can be set to either true
(number required) or false (alphanumeric name allowed).

File name The output NC file name. This will default to the program
name/number.
Comment The program comment, which is usually output as a comment at

the top of the NC file.

Output folder

Specifies the folder for the output NC file. Pressing the ¥
button will open this folder in a File Explorer window. Pressing
the & button opens a folder browser window to select the folder
for the NC file.

Post to Fusion Team

Saves the output file to the cloud. The Fusion Team output
folder field will be displayed if this box is checked, allowing you
to select the cloud folder to post to.

NC extension

Contains the default file extension for the output NC file as
defined in the post processor. You cannot override the file
extension.

Unit

Controls the output units of the NC file. This is usually set to
use the same units as the model, but can be overridden to output
in either Inch or Millimeters.

Open NC file in editor

Check this box if you want to open the output NC file in an
editor after post processing is finished. The editor used is
defined in your Fusion 360 Preferences dialog in the General-
>Manufacture-> External editor field.

Create in browser

Check this box if you want an NC Program automatically
created with the operations you are posting against. Be
forewarned, if this box remains checked each time you post
process outside of an NC Program, then you will continue to get
new NC Programs added to the list.

Introduction to Post Processors 1-8

4 AUTODESK cAM Post Processor Guide 8/8/23

Field Description

Property Table Displays the properties defined in the post processor and allows
you to modify these properties. Please see the Property Table
section in this manual for a full description of post processor

properties.
Fusion 360 Post Process Dialog Fields

F NC Program: NCProgram1 X
Settings | Operations ‘:';:' h
Machine and post Post properties
Use machine configuration » Configuration
Post HAAS - Next Generation Control / haas m = |4

v Preferences
Use cascading post
Use chip transport

Program

Coolant pressure Default
Name/number 1001

Fast tool change
File name 1001

Optianal stop
Comment

_ Optionally cycle tools at start

Qutput folder o/ [J

Optionally measure tools at start
Post to Fusion Team

preload tool
MC extension .nc

Safe start all operations
Unit Document unit

Tool breakage tolerance 0.1
Open NC file in editor

Rotary moves use DPM feeds

Use GO

Use G95 for tapping

Parametric feed

k Radius arcs

Use 55V

Use G187 off

Use subroutines No

Post OK Cancel

Selecting a Post Processor in Fusion 360

You select the folder for the post processor and the post processor itself by pressing the ™ button next
to the Post field. You can right click on the Linked menu in the Post Library dialog to add a new folder
to select post processors from. The new folder will be displayed in the Linked menu.

Post Library

Recent
+ My posts
Local

T Lmkedw Link folder
post-tiorary

Selecting a New Folder for Post Processors

Introduction to Post Processors 1-9

4 AUTODESK cAM Post Processor Guide 8/8/23

[Z] Post Process X
Configuration Folder
| C:/develfpostibrary Setup
Post Configuration
| Enter search tex All vendars ~
HAAS - Mext Generation Control / haas next generation e Open config
Qutput folder MNC extension
[c
Program Settings
Program name or number
Property Value £
| 2005 |
Safe Retracts G53
Program comment Use damp codes Yes
| Router Test Part | Use 55V Mo
Machine model UMC-750
Unit Create single results file Yes
Document unit i Has A-ais rotary Mo
Has B-axis rotary Mo
Reorder to minimize tool changes Has C-axis rotary Mo
Open NC fle in editor Rotary moves use DFM feeds Mo
Use DWO fes W
Search For posts in our Autodesk HSM post library Cancel

Inventor CAM and HSMWorks Legacy Post Process Dialog

Field

Description

Configuration Folder

Specifies the folder location of the post processor you want to
run. You can press the .../ button to open a folder browser
window to select the post processor. This field is only displayed
in the legacy dialog, but you can select the folder in the NC
Programs dialog by pressing the ™ button next to the Post field.

Setup

Used to select preinstalled post processor libraries or to select a
cascading post. A cascading post is usually a 3" party post
processor or verification program that is run after the HSM post
processor. This field is only displayed in the legacy dialog.

Post Configuration

Defines the post processor you want to run. The available posts
are listed in a dropdown menu. There are filters that will limit
the post processors listed, including a Search Text field,
Capabilities (milling, turning, etc.), and Vendors.

Output folder

Specifies the folder for the output NC file. Pressing the '...
button opens a folder browser window to select the folder for the
NC file. The Open folder button opens a file browser in this
folder.

NC extension

Contains the default file extension for the output NC file as
defined in the post processor. You can override the file
extension in this field.

Introduction to Post Processors 1-10

4 AUTODESK cAM Post Processor Guide 8/8/23

Field

Description

Program name or number

The name/number of the output NC file. This name/number will
usually be output as the first line of the NC file, usually as an
Oxxxx code when a number is required or as a comment (XxxXx)
if a name is allowed. The post processor controls whether an
alphanumeric name is allowed in this field or if a number must
be entered. This is defined by the programNamelsinteger =
true; statement in the post processor and can be set to either true
(number required) or false (alphanumeric name allowed).

Program comment

This field is output as a comment at the top of the NC file.

Unit

Controls the output units of the NC file. This is usually set to
use the same units as the model, but can be overridden to output
in either Inch or Millimeters.

Reorder to minimize tool changes

Check this box if you are running with multiple setups and you
want the operations with the same tool numbers to be placed
together to minimize tool changes. Operations within the same
setup will not be reordered.

Open NC file in editor

Check this box if you want to open the output NC file in an
editor after post processing is finished. The editor used is
defined in the Preferences dialog in the General->Manufacture-
> External editor field.

Property Table

Displays the properties defined in the post processor and allows
you to modify these properties. Please see the Property Table
section in this manual for a full description of post processor
properties.

Inventor/HSMWorks Post Process Dialog Fields

1.5.2 NC Programs

NC Programs are supported in Fusion 360 and allow you to group operations together and assign a post
processor that is used for these operations. You create an NC Program by pressing the NC Program
menu or right clicking on a (group of) operation(s) and selecting Create NC Program from the list.
Pressing the Post Process button will bring up the NC Program dialog where you can create an NC
Program from the selected operations when the Post or OK button are pressed. It is important to note
that pressing the OK button will NOT post process the NC Program but will only save it.

Introduction to Post Processors 1-11

4 AUTODESK cAM Post Processor Guide 8/8/23

MILLING TURNING ADDITIVE INSPECTIO!

Fll®eo @S:

mp& v 3D

NC Program

Group toolpaths from multiple setups into a new

y combined NC Program. Reduce tool changes on
setups with multiple fixtures and improve efficiency
by completing all similar operations. Create multiple
NC Program groups for different postprocessing
situations.

{4 Edit
Iy Edit Tool

Compare and Edit
Create NC Program

s Generate &
R Press Ctrl+/ or more help. @ Simulate

NC Program Button Right Click to Create NC Program

The NC Program dialog contains two tabs, Settings and Operations. This is the same dialog that is
displayed when Post Processing from the menus.

You will also notice that when you post process against an NC Program that the NC Program dialog is
displayed. If you want to change any settings for post processing when using an NC Program, you must
edit the NC Program to make changes.

F'NC Program: NCProgram2 X

Settings | Operations ({.} v @)
~ B & Setup for Metric tools: milling Reorder to Minimize Teol Changes
- [] £ 2D Milling
@® 2D-Face

4 2D-Contour

Operation Instance Setup Work Offset Tool
@ 2D-Contou... |1/1 Setup for Metr.. |1 #2 - 03/8" flat (myTool2)
% 2D-Contour with compensation left @ 2D-Contou... |1/1 Setup for Metr.. |1 #2 - 03/8" flat (myTool2)
4 2D-Contour with compensation ri @ 2D-Contou... |1/1 Setup for Metr.. |1 #2 - 33/8" flat (myTool2)

© 20-Bore B z0-Bore (2) |11 Setup for Metr.. |1 #2 - 3/8" flat (myTool2)

-Contour with compensation left (2)
2D-Contour with compensation right (.

| 2D-Bore (2)

- £3 2D Milling Wear Comp
@ 2D-Face 2
% 2D-Contour 2
4 2D-Contour with compensation left 2
4 2D-Contour with compensation right 2
© 2D-Bore2
= 7 2D No Compensation
@ 2D-Face (2)
< 2D-Contour (2)
@ £3 2D No Bore
& 2D-Face (4)
< 2D-Contour (&)
4 2D-Contour with compensation left (3)
4# 2D-Contour with compensation right (.

- B3 Drilling Cycles

Post OK Cancel

Selecting Operations for an NC Program
Introduction to Post Processors 1-12

»4 AUTODESK cAM Post Processor Guide 8/8/23

1.5.3 Machine Configurations

Machine Configurations can be used to define the kinematics and multi-axis capabilities of the machine
for both the post processor and machine simulation. A Machine Configuration is assigned to a Setup in
the CAM system. The usage of a Machine Configuration has distinct advantages.

1. Allows a single generic post processor to be used for multiple machines with different
kinematics.

The post processor is assigned directly to the Machine Configuration.

The NC output folder is defined in the Machine Configuration.

Defines the unique multi-axis features for the machine.

Required for Machine Simulation.

Required for Operation Properties.

oukwb

You can determine if a post processor supports a Machine Configuration by checking for the
activateMachine function inside of the post processor. If this function is not present, then the post
processor will most likely not accept or fully support a Machine Configuration. There are a number of
post processors that support Machine Configurations, such as the Fanuc, Haas Next Generation,
Heidenhain, Hurco, Siemens, and Tormach posts.

You assign a Machine Configuration to a CAM Setup when creating or editing the Setup and pressing
the Select... button. This will bring up the Machine Library dialog that allows you to select a machine
from the available configurations.

@ SETUP: SETUP FOR METRIC TOOLS: MILLING =
5‘ @ + /SR SE W Ed't'ng Menu Clear filters Filters (2]
N apabilitics %
¥ Machine Recent Autodesk
/ Document Generic 3-axis Additive
Machine Select.. ® CymEeiE Cutting
Local Autodesk Milling
» Linked Generic 5-axis AC (head-head)
Turning
¥ Setup + Fusion 360 library
@ Only machines in My Machines can be edited. Inspection
A i - Autodesk i i
Operation Type Miling Generic 5-axis AC (head-table) v Issimulation ready
Simulation ready
¥ Work Coordinate System (WCS
ystem (WCS) Location of Autodesk Machine - Vendor
Orientation Model orientation = MaChine Generic 5-axis AC (table-table) 2 i All
! i i Configurations :
- _ Configurations
Origin Model box point b Autodesk
Generic 5-axis BC (head-head)
Model Point i
? Filters and
Autodesk i
* Model Generic 5-axis BC (head-table) Maohlne
Configuration
Model = Body X H H
b Autodesk Description
Generic 5-axis BC (table-table)
D Fixture
(i] 0K Cancel Cancel

Selecting a Machine Configuration

The Machine Library dialog consists of the following areas.

Introduction to Post Processors 1-13

4 AUTODESK cAM Post Processor Guide 8/8/23

Area Item Description

Location of Machine Specifies the area you want to select a Machine
Configurations Configuration from.

Recent Displays recently selected Machine
Configurations.

Document Displays Machine Configurations used in the
active model.

My machines Displays Machine Configurations stored locally on
your computer or in selected (linked) folders. You
can add folders to the linked area by right clicking
on the Linked menu and selecting Link folder.

L4 LH"II‘{E'EI ﬂ:_:nk folder

= Fusion 360 library

Fusion 360 Library | Displays all Machine Configurations included with

Fusion 360.
Machine Configurations Lists the Machine Configurations stored in the
selected location.
Filters and Machine The Filter tab allows you to filter the Machine
Configuration Configurations based on Capabilities, Machine
Description Simulation Ready, and Vendor. The Info tab

displays information about the selected Machine
Configuration.

Editing Menu Contains buttons for creating, editing, copying,
and deleting Machine Configurations. Right
clicking on a Machine Configuration will also
display this menu.

Creates a new Machine Configuration.

P Edits an existing Machine Configuration. The
Machine Configuration must reside in one of the
My machines folders.

Iy Copies the selected Machine Configuration.

[Pastes the selected Machine Configuration into the
selected folder.

S5 Imports an external Machine Configuration file.

E Exports the selected Machine Configuration to an
external file.

[Deletes the selected Machine Configuration.

Machine Library Dialog

Once you find the Machine Configuration you want to use you can copy it into your Local folder or a
Linked Folder. You can do this by dragging the configuration onto the desired My machines folder or

Introduction to Post Processors 1-14

4 AUTODESK cAM Post Processor Guide 8/8/23

by copying and pasting it into the desired folder. You can only edit Machine Configurations stored in

one of the My machines folders.

The latest versions of Machine Configurations are available on our online Post Library. From here you
can search for the machine by the machine type, the manufacturer of the machine, or by machine name.

This is the place to find generic CNC

Q Find your machine

HAAS

F AUTODESK' FUSION 360°

Machine Library for Fusion 360

nere

HAAS VF-1

/ Share

machines.

(Milling v] [Any vendor v

Once a Machine Configuration is selected, you can edit it by pressing the Edit

Online Machine Library

... button in the Setup

dialog.
@ SETUP: SETUP FOR METRIC TOOLS: MILLING F Machine Configuration %
6‘ 4? @ I Descneticm I Description
¥ Machine / Dimensicns Description
Capabilities
Workpiece |Generlc 5-axis AC (table-table) non-tcp |
Machine Select... Edit... x Kinermatics Model
¥ Linear | |
Generic 5-axis AC (table-table) non-tcp ¥ Linear
. Vendor
Z Linear
A Rotary |Autndesk |
W EEID C Rotery CNC Control
Table | |
Operation Type Milling b Spindle
Machining Time
. Coolant
¥ Work Coordinate System (WCS)
Multi-Axis
Orientation Model orientation ~
Origin Model box point b
Model Point
¥ Model
Model [Body X
D Fixture
[i] OK Cancel Load Save Milimeters ~ Cancel
Introduction to Post Processors 1-15
4 AUTODESK caM Post Processor Guide 8/8/23

https://cam.autodesk.com/hsmposts

Editing/Creating a Machine Configuration

The areas of the Machine Configuration that are important for post processing are the Description,
Kinematics, Post Processing, and Multi-Axis settings. The information in the other areas can be
accessed by the post processor, but not all are used by the library post processors as of this writing.

Area Description

Description Describes the post processor, machine, manufacturer, and CNC control
of the configuration.

Kinematics Defines the machine kinematics of the moving axes. You can define up

to 3 linear axes, 2 rotary axes, and a single spindle. You can add/delete
an axis by right clicking on a component and selecting the appropriate
action. When you add an axis, it will be added after the component that
you clicked on.

X Linear |

Z Add linear axis
Add rotaryaxislb’
Splﬂd DE'EtE

The definition of the selected axis is displayed in the right pane of the
dialog, including the home position, rotation vector (orientation), range,
preference, and TCP setting. These fields apply directly to the
parameters of the createAxis function as described in the Multi-Axis
Post Processors chapter.

Post Processing This is where you will select the location of the post processor, the post
processor itself, and the output folder for the NC file. These will
become the defaults when post processing and for NC Programs.
Multi-Axis Defines the multi-axis capabilities of the control, along with how
retract/reconfigure operations are handled, and singularity settings.
These capabilities are described in the Multi-Axis Post Processors

chapter.
Machine Configuration Post Processor Settings

1.6 Creating/Modifying a Post Processor

Once you find a post processor that is close, but not exact to the requirements of your machine you will
need to make modifications to it. The good news is, all of posts are open source and can be modified
without limitation to create the post you need. You have a few options for making the modifications.

1. Make the modifications yourself using this manual as a guide and by asking for assistance from
the HSM community on the HSM Post Processor Forum.
2. Visit HSM Post Processor Ideas and create a request for a post processor for your machine.
Other users can vote for your request for Autodesk to create and add your post to our library.
3. Contact one of our CAM partners who offer post customization services. These partners can be
found on the HSM Post Processor Forum at the top of the page.
Introduction to Post Processors 1-16

4 AUTODESK cAM Post Processor Guide 8/8/23

https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent

H HSM Post Processor Forum

CREATE A NEW POST Options ¥

ALL POSTS | ACCEPTED SOLUTIONS = UNANSWERED

Subject Author

& News and updates

& Technical FAQ

& HSM post adjustments needed? Find your right contact here @

Finding HSM CAM Partners

No matter which method you decide to use to create your post processor, you should have enough
information available to define the requirements, which includes as much of the following as you can

gather.

A post processor (.cps) that will be used as the seed post.

Sample NC code that has run on your machine.

The machine/control make and model.

The type of machine (mill, lathe, mill/turn, waterjet, etc.).

The machine configuration, including linear axes, rotary axes setup, etc.
A programming manual for your machine/control.

ocakrwhpE

1.7 Testing your Post Processor — Benchmark Parts

When testing your post processor, you will need a part with cutting operations to post against. We have
created standard benchmark parts for this specific purpose. These parts cover the most common
scenarios you will come across when testing a post processor and are available for HSMWorks, Inventor
CAM, and Fusion 360 CAM. They are available in both metric and inch format for all three CAM
systems. There are five different benchmark parts.

e Milling

e Turning and Mill/Turn
e Stock Transfers

e Waterjet-Laser-Plasma
e Probing

Introduction to Post Processors 1-17

4 AUTODESK cAM Post Processor Guide 8/8/23

1.7.1 Locating the Benchmark Parts

The benchmark parts are available to all users of Autodesk CAM and can be accessed in the Samples

folder for each product.

~
B open

QU

0S5Disk (C:) » Program Files » HSMWorks » examples

[

- |4 |Segr~:r" examples

2|

Bl Desktop
il Libraries

J’ Music
[E=] Pictures

B Videos

@ Documents

#- 0 @
Date modified Type Size
10/30/2017 5:35 PM SOLIDWORKS Part... 473 K
10/30/2017 5:35 PM SOLIDWORKS Part... 403 K

Organize » Mew folder
.. Daily Builds o Name .
s
B' "’;ES & 2dPartG.SLDPRT
P":t s (@, 3dStrategies. SLDPRT
) e [Benchmark-Mill INCH.SLDPRT
¢@ OneDrive - autoc

3/2/2018 6:30 PM

SOLIDWORKS Part Document |6 k

m

| post-custemizati

mn

- 4]

&y Benchmark-Mill_MM.SLDPRT 3/2/2018 6:30 PM SOLIDWORKS Part... 256 K
& Benchmark-MillTurn_INCH.5LDPRT 3/2/2018 6:30 PM SOLIDWORKS Part... 1101 K
& Benchmark-MillTurn_MM.SLDPRT 3/2/2018 6:30 PM SOLIDWORKS Part... 1,009 kL4
% P12D and 3D.SLDPRT 10/30/2017 5:35 PM SOLIDWORKS Part... 342k
% P2 2D.SLDPRT 10/30/2017 5:35 PM SOLIDWORKS Part... 500 k
& P3 A-Axis.SLDPRT 10/30/2017 5:35 PM SOLIDWORKS Part... 3,081 k
Stock-Transfer INCH.SLDPRT 3/2/2018 6:30 PM SOLIDWORKS Part... 147k
#* Stock-Transfer MM.SLDPRT 3/2/2018 6:30 PM SOLIDWORKS Part... | 143k~
m 3

Display States: <Standard>_Anzeige -

File name: Benchmark-Mill_INCH.SLDPRT

Quick Filter:

~ [AllFiles) -

Cancel]

| Open

b

HSMWorks Sample Parts
C:\Program Files\HSMWorks\examples

Seatch Help & Commands_

] sp st

© anene

Smulace

Toclpath Job v
o [
€ Benchmark INCH.ipt Operation(s)
-5 Setup for Metric tools

&= »

% D-Face

Manual NC - Optional stop|
4 2D-Contour

Manual NC - Force tool chi
4 2D-Contour with compens
4 2D-Contour with compens
Manual NC - Qptional stop
[20-Bore

£ Diilling

% Rapid out [Rapid out]

% Dwell and rapid out [Dwell
% Chip breaking [Chip breaki
% Deep drilling [Deep drilling
% Break-through drilling [Bre

% Tap [Tap]

% Right tap [Right tap]

< Tap with chip breaking [Ta
% Lefttap [Left tap]

% Reaming [Reaming]

% Boring [Boring]

% Stop boring [Stop boring]
% Fine boring [Fine boring]
% Back boring [Back boring]
% Circular mill [Circular mil]

& B) B

Setup Folder Paem

% Guided deep drilling [Guidq =

D (B & roeeme

2D Pocket
oil & Adzpive

2 comour

) ase

3D Milng ~

Face
& 2D Contour

Driing 2D Miling ~

Muti-Aods Miling

5 TootFrore] ool iray
e o F L B e [reevansge
T vess B rearor (2 opeors

Turing

o)

Help/Tutorias

Orentation v Manage

Search Examples

Organize v Includeinlibrary » Sharewith v New folder

M Public ~ Name .

1| Favorites
() Benchmark-Mill INCH.ipt
1| JuniperN
7 Benchmark-Mill_MM.ipt
1\ Libreries
(7 Benchmark-MillTurn_INCH.ipt
) omax c
7 Benchmark-MillTurn_MM.ipt
|\ PublicDe
(7] CAM Mania Tutorial.ipt
1| PublicDc
) Stock-Transfer INCH.ipt
1\ forever
(7] Stock-Transfer MM.ipt
1! Autode 2
(A TutorialLipt
L L deski
= _| D Tutorial2.ipt
|| Benef =
() TutoriaB.ipt
Il bw6
(T Tuterial.ipt
Il bwe
() Tutorials.ipt
Il bw6
(T Tuterialb.ipt
|\ Inven
1 Tnven «

13 items

Date modified

9/24/20167:04 AM
9/24/2016 7:04 AM
0/24/2016 7:04 AM
9/24/2016 7:04 AM

3/2/2017 3:50 AM
3/2/2017 3:50 AM
9/5/2014 5:33 PM
0/5/2014 5:33 PM

9/24/2014 8:00 AM
9/24/2014 3:00 AM
9/24/2014 8:00 AM
3/20/2015 4:06 PM

= 0 @

Type Size

Autodesk Inventor. 1,031 KB
Autodesk Inventor... 967 KB
Autodesk Ir 3151 KB
Autodesk Inventor... 3077 KB
Autodesk Inventor. 537 KB
‘Autedesk Inventor. 525 KB
Autodesk Inventor. 556 KB
‘Autedesk Inventor. 264 KB
Autodesk Inventor. 563 KB
Autodesk Inventor. 215KB
Autedesk Inventor... 664 KB
Autodesk Inventor. 1934 KB
Autedesk Inventor... 648 KB

In\;entor EAM Sample Parts

9) Help/Tutoriss

ol

You
QY vouruse viseos

S [

@

C:\Users\Public\Public Documents\Autodesk\Inventor CAM\Examples

»4 AUTODESK cAM Post Processor Guide 8/8/23

Introduction to Post Processors 1-18

(F Autadesk Fusien 360

< 18
ata Panel

ERSTSEp 1 icr % | B post Pro..um_incK
—
ider - O e =
& Sperten n & = ¥ SEH = 0E &
INSPECT

TLAXISY | TURNINGY | CUTTING ACTIONS ™

You are all set with the latest update. Find out what's new.

MANAGE ¥ ADD-INS ¥

LIBRARIES

= Assets

Project that contains assets used by Fusion 360
including templates, libraries, and other
configuration files.

SAMPLES

Basic Tralning
i-

Samples used in the Hands on exercises in our
Help topics.

a CAM samples

Samples demonstrating SAM functionality
hitp:/autode sk/f360cam

o Uesign Samples
Samples of completed Fusion designs.

. Simulation Samples

famples demanstrating Simulation functionality

N Warkshops & Fvents

Samples used for Autodesk sponsored
Workshops & Events

Filter #5 O Q- O E

© TEXTCOMMANDS

Fusion 360 CAM
Select the Data Panel and Double Click on CAM Samples

< & CAM Samples ga’ < @ CAM Samples ca’

[Data | People I [vaa | People I

FoY o]
]

il CAM SummitD. Ml Friday Fasttracks

@ PostProcessor... @ Post Processor ...

il Machine Tables il PostProcessor

P PostProcessor TP Post Processor ...
Ml Tutorials il Uttimate
P Probz Sample ... P Stock “ransfer

Fusion 360 CAM (continued)
Double Click on Post Processor to Display the Sample Parts

1.7.2Milling Benchmark Part
The milling benchmark parts include the following strategies.

e 2D

Introduction to Post Processors 1-19
»4d AUTODESK caM Post Processor Guide 8/8/23

e Drilling
e Coolant codes
e Manual NC commands
e 3+25-axis
e 5-axis simultaneous

e -

H O H o~

I PostPre i x| @ unec %[® postpro..ing e x [+ i
I e z2E & &% = ¥ SR = 0E &

SETUP~ 20v | 3D | DRLLNG = MULTEAXS™ | TURNNG™ | CUTTING ACTIONS » INSPECT WANAGE™ | ADD-NS ™
© BROWSER
A Q) (5 PostProcessor Benchmark - Miling_IN
D @ (5 camcomponent1
D B camMNamed Views

[unisiin

D & [mi2nFace
D Manual NC - Optional stop [0,
b
D s [7212D-Contour with comper.
D & [12120-Contor
D Manual NC - Optional stop (2.
D E m220-Bore

D B3 oriling

D B3 coolant codes

D B3 manuainc

D B sx3e2

ith comper.

© TEXTCOMMANDS

Mill Benchmark Part

1.7.3Mill/Turn Benchmark Part
The mill/turn benchmark parts contain the following strategies.

e Primary and Secondary spindle operations
e Turning

e Axial milling

e Radial milling

e 5-axis milling

Introduction to Post Processors 1-20

4 AUTODESK cAM Post Processor Guide 8/8/23

T e - . i - - ™

H B H o9~
@ PostProc._.lling_MM® Xl @ untitiea Xl @ PostPro ing_INCH XI @ post Pro...um_INCH X | o
eegB8 o v =2 3 =008
SETUP~ MULTHAXIS™ | TURNING ™ ACTIONS *
© BROWSER - S

A Q (B PostProcessor Benchmark - MifTurn_L...
D @ (5 cAM Componentt
D B3 caMNamed Views
[unisiin

D = [ITuming Profle with com;...
2] Turning Single Groove

|
bii}
S 31 Turning Thread2 without.
b}
ol

VVBVVVVV
H

@e
3
i
c

- BOQ BB

Turnlng and Mill/Turn Benchmark Part

1.7.4 Stock Transfer Benchmark Part
The stock transfer benchmark part contains the following strategies.

e Primary and Secondary spindle operations
e Simple part transfer
e Part transfer with cutoff
i — e - -

B H «-~-

™ PostProc. lling W= X | W uniiied® x| ® PostPro_inacH X | W PostPro_um INCH X | @ stock Transfer %
G1
—
= & § B & & 3 ¥ & E . = @
sETUP~ v | DRLLNG | MULTFAXS™ | TURNNG™ | CUTTNG ACTIONS ¥ MANAGE

© BROWSER
4 Q (b StockTransfer
D Q (B caMComponent1
D E] caMNamed Views
0 unesiin
4 L. 559,
[P Setup - Simple Part Transfer
D & sub-spindie Operations1
D 5 Setup-PartTransfer with Cutoff
D [sub-spindie Operations2 (2

FEORT BB

© TEXT COMMANDS

Stock Transfer Benchmark Part

Introduction to Post Processors 1-21

»4 AUTODESK cAM Post Processor Guide 8/8/23

The Waterjet-Laser-Plasma benchmark part contains the following strategies.

Waterjet

Laser

Plasma

Lead in/out

Radius compensation

L

MULTLAXIS ™ | TURNING INSPECT

Waterjet-Laser-Plasma Benchmark Part

1.7.5 Probing Benchmark Part
The Probing benchmark part contains the following strategies.

e Various probing cycles

Introduction to Post Processors 1-22

»4 AUTODESK cAM Post Processor Guide 8/8/23

F Autodesk Fusion 360 -
E vH o~ @1
ater-LaserPlasma® X | @ Probe Sa...Complete X I +

e z2E © © = T SEE = 0E &

SETUP ¥ 20v 3D DRLLNG = MULTHAXISY | TURNING™ | CUTTING ACTIONS ¥ INSPECT MANAGE ¥ ADD-INS ¥
5 ~

© BROWSER

A4 J [Probe Sampie Part - Complete
D @ (b caucomponent1
D B3] caMNamed Views
[unisiin
4 . 555,
4 13, Setuet,,
D § mawesprobet
D § mawesProbe2
D § mawesProbes
D § meawesprobes
§ m4wes Probes

§ [4wes Probes
§ m4wes Probe?
4§ [T41Wes Probes
§ m4wes Probeto
D § [méwespropett
D § mawesProbe1s

D
D
D
D
D
D

89 Q G-E

© TEXT COMMANDS

Probing Benchmark Part

2 Autodesk Post Processor Editor

Since Fusion 360, Inventor CAM, and HSMWorks post processors are text-based JavaScript code, they
can be edited with any text editor that you are familiar with. There are various editors in the
marketplace that have been optimized for working with programming code such as JavaScript. We
recommend Visual Studio Code with the Autodesk Fusion 360 Post Processor Utility extension. Using
this editor provides the following benefits when working with Autodesk post processors.

Color coding

Automatic closing and matching of parenthesis and brackets

Automatic indentation

Intelligent code completion

Automatic syntax checking

Function List

Run the post processor directly from editor

Match the output NC file line to the post processor command that created it

2.1 Installing the Autodesk Post Processor Editor

Before you can use the VVSC editor you will need to install it. The easiest way is to visit the Autodesk
Fusion 360 Post Processor Utility page in the Visual Studio Marketplace, where you can download VSC
and then the Autodesk Fusion 360 Post Processor Utility extension. Please note that the Visual Studio
Code site changes quite frequently, so the directions/pictures in this section might not be exactly what
you see on the screen, but the installation steps should still be similar.

Autodesk Post Processor Editor 2-23
»d AUTODESK cAM Post Processor Guide 8/8/23

https://marketplace.visualstudio.com/items?itemName=Autodesk.hsm-post-processor
https://marketplace.visualstudio.com/items?itemName=Autodesk.hsm-post-processor

| Marketplace sgnin 0O

Visual Studio Code > Other > Autodesk Fusion 360 Post Processor Utility New to Visual Studio Code? Get it now.

Autodesk Fusion 360 Post Processor Utility
Autodesk | 32installs | & 35downloads | ¢ d sk d (0) | Free

‘ Post processor wutiiy.
m Trouble Installing? =

Overview Q&A Rating & Review

Autodesk Fusion 360 Post Editor for Visual Studio Code Categories
yther

Welcome to the Autodesk Fusion 360 post editing extension for Visual Studio Code (https://code.visualstudio.com/)

This extension adds several functions that will aid you when working on post development specifically for Fusion 360, gs

nventor HSM, Inventor HSM Express, HSMWorks, and HSMXpress. Please note that this utility is not compatible with

N keybindings
FeatureCAM. PartMarker, and PowerMILL

To learn more about the CAM solutions see: hity

Resources

The repository for the extension is hosted at; ht

You can get the installation for Visual Studio Code at: https://marketplace visualstudio.com/items?
temName =Autodesk hsm-post-processor

The extension is distributed under the MIT license. See LICENSE txt.

Released on
Features Last updated

Publisher
* Post directly from VS Code. Unique Identifier
* Quick view post processor variables and functions.

* Jump to code by dlicking line in NC output.

Report

v] =]
Installing Visual Studio Code

This link will take you to the Visual Studio Code installation page. Select the correct version for your
operating system.

www.is ®

Code editing. . S

t http = require(

0 ;
Redefined. = e

normalizePort (

Download for Windows
Stable Build

Stable Insiders

macOS Package 4

Windows x64 User Installer port = parselm

Linux x64 .deb ©master S11131 QOAD Ln9.Col21 Spaces? UTFE IF TypeSaipt @
pm

Other downloads

Installing the Windows Version of Visual Studio Code

This will download an installation program that you can run to do the actual install. Left click on the
installation program to execute it.

)d VSCooelsersetup....exe &

Click the Executable to Install VSC

Autodesk Post Processor Editor 2-24
»4d AUTODESK CAM Post Processor Guide 8/8/23

Follow the instructions displayed on the screen to finish the installation. You should select the defaults

for all questions, though you may want to make this the default code editor and add it to the Windows
Explorer file context menu.

Setup - Visual Studio Coc

Select Additional Tasks n
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing Visual Studio
Code, then dick Mext.

Additional icons:

Create a desktop icon

Other:

Add "Open with Code™ action to Windows Explarer file context menu

[Add "Open with Code” action to Windows Explorer directory context menu
Register Code as an editor for supported file types

Add to PATH (available after restart)

[< Back ” Mext = l[Cancel]

Selecting Installation Options
You can choose to startup the Visual Studio Code editor automatically after it is installed. Once the
editor is opened you can install the Autodesk Fusion 360 Post Processor Utility by opening the

Extensions view in the left pane and searching for Autodesk. Select the Autodesk Fusion 360 Post
Processor Utility to install it.

Autodesk Post Processor Editor 2-25
»4d AUTODESK CAM Post Processor Guide 8/8/23

File Edit Selection View Go Debug Terminal

NS: MARKETPLACE = ..

autodesk « .

Autodesk Interactive Debugger 2
Extension to debug Autodesk Interactive appl...
jschmidt42 Install

Autodesk Fusion 360 Post Processor U... 220
Post processor utility.
Autodesk Install
Lanouage MaxScript 153

G_J 4 Max MaxScript language support
Atelier Bump Install
MaxScript ooz
MaxScript for VSC
AndrewMcWhae Install

Downloading the Autodesk Fusion 360 Post Processor Extension

autodesk
Autodesk Fusion 360 Post Processor Utilii
Autodesk | g 36 | dedkdedkd | License

ekl Post processor utility.

Autodesk Fusion 360 Post Processor U... 220

Post processor utility. Install e
Autodesk Install

Language MaxScrip
Autodesk 3ds Max MaxScnpt language support
Atelier Bump Install

Details Contributions Changelog

Installing the Autodesk Fusion 360 Post Processor Extension

After installing the Autodesk Fusion 360 Post Processor Utility extension you will want to exit the VSC
editor and then restart it so that the extension is initialized. You are now ready to start editing Autodesk
post processors.

2.2 Autodesk Post Processor Settings

After installing the Autodesk Post Processor editor you will want to setup the editor to match your
preferences. Open the settings file by selecting File->Preferences->Settings. This section will describe
some of the most popular settings, but feel free to explore other settings at your leisure to find any that
you may want to change. The User Settings can also be displayed by using the Ctrl+Comma shortcut.

Autodesk Post Processor Editor 2-26
»4d AUTODESK CAM Post Processor Guide 8/8/23

File < Iim@e\\' Go Debug Tasks

Mew File

New Window

Open File
Open Folder... [Cirl=K Cirl=0]
Opan Workspacs...

Open Recent

Save

Save Az

Save All [Crl+K 5]

Auto Save

Revert File

Close Editor

Close Window

Help

[hand

Keyboard Shortcuts [Cerl+K Cirl 5]

Keymap Extensions [Cer+X Cirl+M]

User Snippsts

Color Theme [Cerl+K Cerl=T]

Displaying the Editor Settings
The settings will be displayed in a separate tab. You can now search for individual settings using the
Search bar. To display the Autodesk Fusion 360 Post Processor Utility settings type in hsm in the search
bar.

hsm ¢ 61 Settings Found

User Settings Workspace Settings

HSMPost Utility: Auto Update Function List
| Updates the function list automatically, without the need for refreshing

HSMPost Utility: Circular Color

lightblue

HSM Post Utility (12
HTML (13 HSMPost Utility: Color Qutput
- | Iftrue, the code output from onLinear, on

Rapid and onCircular are colored

HSMPost Utility: Enable Auto Line Selection
| Iftrue, the auto line selection will be enabled

HSMPost Utility: Linear Color

lightgreen

HSMPost Utility: Output Units
Sets the desired output units for post processing

IN v

HSMPost Utility: Post On CNCSelection

Modifying the Editor Settings
There is a description that explains the setting making it easy for you to make the changes.

The following table provides a list of some of the more common settings and their descriptions.

Autodesk Post Processor Editor 2-27
»4d AUTODESK CAM Post Processor Guide 8/8/23

Setting

Description

Editor > Minimap

Controls if the minimap is shown. The
minimap is a small representation of the entire
file displayed on the right side of the window
and allows you to easily scroll through the file.

Editor: Font Size

Size of the editor font.

Editor: Font Weight

Weight (thickness) of the editor font.

Editor: Detect Indentation

Automatically detects the editor.tabSize and
editor.insertSpaces settings when opening a
file.

Editor: Insert Spaces

When checked, spaces will be inserted into the
file when the tab key is pressed.

Editor: Tab Size

Sets the number of spaces a tab is equal to. The
standard setting for Autodesk post processors is
2

Editor > Parameter Hints

Enables a pop-up that shows parameter
documentation and style information as you

type.

Editor: Auto Closing Brackets

Controls if the editor should automatically close
brackets after opening them.

Extensions: Auto Check Update or Auto Updates

Automatically (check for) update extensions.

Files: Associations

Associates file types with a programming
language. This must have "*.cps": "javascript"
set in it to enable the automatic features of the
editor in Autodesk post processors.

Workbench: Color Theme

Defines the color theme for the editor. This
setting can be changed using the File-
>Preferences->Color theme menu.

HSMPost Utility: Auto Update Function List

Updates the function list automatically, without
the need for refreshing.

HSMPost Utility: Sort Function List Alphabetically

When checked the function list will be sorted.
Unchecked will display the function names in
the order that they are defined.

HSMPost Utility: Color Output

When checked, rapid, feedrate, and circular
blocks will be displayed in color.

HSMPost Utility: Rapid Color

Color for rapid move blocks.

HSMPost Utility: Linear Color

Color for feedrate move blocks.

HSMPost Utility: Circular Color

Color for circular move blocks.

HSMPost Utility: Enable Auto Line Selection

Enables the automatic selection of the line in
the post processor that generated the selected
line in the output NC file.

HSMPost Utility: Output Units

Sets the desired output units when post
processing

HSMPost Utility: Shorten Output Code

Limits the number of blocks output when
posting, making it easier to navigate.

4 AUTODESK cAM Post Processor Guide 8/8/23

Autodesk Post Processor Editor 2-28

Setting Description

HSMPost Utility: Post On CNCSelection When checked, post processing will occur as
soon as a CNC file is selected.

HSMPost Utility: Post On Save Automatically run the post processor when it is
saved, only if the NC output file window is
open.

Commonly Changed User Settings

2.3 Left Side Flyout

On the left side of the editor window is a tab that will open different flyout dialogs. The features
contained in the flyout dialogs are quite beneficial while editing a post processor and are explained in
this section. The Source Control flyout is not used when editing post processors and will not be
discussed.

-
ﬂl » haas with a-axis sample.cps - Visual Studio Code [Administrator]

File Edit Selection View Go Debug Tasks Help

Explorer

Search

Source Control

Bookmarks

Extensions

Left Side Flyout Dialog

2.3.1 Explorer Flyout

Eﬁ Explorer

The Explorer flyout contains expandable lists that are used to display the open editors, folders, variables,
functions, and CNC selector. The arrow P> at the left of each entry is used to expand or collapse the list.

List Description

OPEN EDITORS Lists the files that are open in this instance of the
VSC editor. Any files that have been changed,
but not been saved will be marked with a bullet
(*). The number of changed files that have not
been saved is displayed in the Explorer icon.

Autodesk Post Processor Editor 2-29
»4d AUTODESK CAM Post Processor Guide 8/8/23

List

Description

NO FOLDERS OPEN

You can open a folder for quick access to all of
the post processors in the folder. Expanding the
folders will display the Open Folder button that
can be used to open a folder. Clicking on a file in
the open folder will automatically open it in the
editor. Take note that if a folder is opened, then
all opened files in the editor will first be closed
and you will be prompted to save any that have
been changed.

OUTLINE

Lists the functions defined in the post processor
and the variables defined in each function.
Expanding the function by pressing the arrow »
to the left of the function name will display the
variables defined in the function. You can select
any of the variables to go to the line where it is
defined.

CNC SELECTOR

Contains the Autodesk intermediate files (*.cnc)
that are available to the post processor from the
VSC editor. This list is further explained in the
Running/Debugging the Post section of this
chapter.

FUNCTION LIST

Expanding the function list will display the
functions defined in the active post processor.
The functions will either be listed in alphabetical
order or by the order they appear in the post
processor depending on the HSMPost Utility:
Sort Function List Alphabetically setting. You
can select on a function in this list and the cursor
will be placed at the beginning of this function in
the editor window and while traversing through
the post processor the function that the cursor is
in will be marked with an arrow P>, making it
easy for you to determine what function the
active line is in.

POST PROPERTIES

Contains the Property Table for the post
processor, similar to the Property Table displayed
when running the post from CAM. This list is
further explained in the Running/Debugging the
Post section of this chapter.

VARIABLE LIST

Lists the variable types supported by the post
processor, such as Array, Format, Vector, etc. It
does not contain a list of variables defined in the
post processor. Expanding the variable type by

Autodesk Post Processor Editor 2-30

4 AUTODESK cAM Post Processor Guide 8/8/23

List Description

pressing the arrow P> to the left of it will display
the functions associated with the variable type.
Explore Flyout Selections

4 NO FOLDER OPENED

You have not yet opened a

4 OPEN EDITORS folder. 4 LATHE CHANGES

I5 haas ds-30ssy.cps

® 5 haas with a-axis sample.cps.. = Fold
older :
I5 haas.cps pen IS haas ds-30y.cps

{} User Settings 5 haas st-10.cps

Open Editors Opening a Folder Open Folder File List
4 OUTLINE al
Filter
=z 4 CNC SELECTOR 4 FUNCTION LIST
4 [onOpen o .
- St b Custom * initializeActiveFeeds
section .
4 Cuttin *
@1 axis g : onchange
o e Waterjet P onCircular
@ description b center compensation * onClose
N b in-computer compensation * onCommand
Outline CNC Selector Function List

4 POST PROPERTIES

writeMachine : true 4 VARIABLE LIST
writeTools : true Array
preloadTool : true indexOf()
showSequenceNumbers : true
lastIindexOf()

sequenceMumberStart : 10]
sequenceMumberincrement : 5 b
optionalStop : true vizeEn

Post Properties Variable List

2.3.2 Search Flyout

Search

You can search for a text string in the current file or in all of the opened files. To search for the text
string in the current file you should use the Find popup window accessed by pressing the Ctrl+F keys.

Autodesk Post Processor Editor 2-31
4 AUTODESK CAM Post Processor Guide 8/8/23

P |: nd Aa BBl & | Mo Results x

Ctrl+F Find Popup — Search for a Text String in the Current File

As you type in a text string the editor will automatically display and highlight the next occurrence of the
text in the file. The number of occurrences of the text string in the file will be displayed to the right of
the text field. You can use the Enter key to search for the next occurrence of the string or press the
arrow keys to search forwards — and backwards « through the file. If you use the Enter key, then the
keyboard focus must be in the Find field.

useParanctricFeed: false, // specifies that feed should » 022 WK 2007 € S E X

showNotes: false, // specifies that operation notes should be output

useGd: false, // allow GB when moving along more than one axis

useG28: false, // specifies that G28 should be used instead of G53
useSubroutines: false, // specifies that subroutines should be generated

Using the Find Popup to Search for Text Strings

The Search flyout searches for a file in the opened files and in the files located in an open folder (refer
to the Explorer flyout to see how to open a folder). The Search dialog will be displayed when you press
the Search button.

F Search Aa EE:I ¥

LY

Search Flyout — Search for a Text String in Multiple Files

Entering a text string to search for and then pressing the Enter key will display the files that contain the
text string and the number of instances of the text string in each file. You can expand the file in the list
by pressing the arrow key P and each instance of the text string found in the selected file will be
displayed. Clicking on one of the instances causes the editor to go to that line in the file and
automatically open the file if it is not already opened. If you don't make any changes to the file and then
select the text string in another file, then the first file will be closed before opening the next file. An
unchanged file opened from the Search flyout will have its name italicized in the editor window.

Autodesk Post Processor Editor 2-32
»4d AUTODESK CAM Post Processor Guide 8/8/23

-
g‘haas Ty e e e T o —

File Edit Selection View Go Debug Tasks Help

SEARCH ¢ a £ th a- e haas ds-30y.cps %
630 1t (true) { // nign teed
¥ WorkPlane Aa Bl ¥ 631 if (movements & (1 << MOVEMENT_HIGH_FEED)) {
479 results in 19 files 632 var feedContext = new FeedContext(id, localize("High Feed"),
633 activeFeeds.push(feedContext);
b Lo iz 634 activeMovements[MOVEMENT_HIGH_FEED] - feedContext;
haas 635 3
var currentWorkPlaneABC = .. 636 ++id;
function forceWorkPlane() { 637 }
currentWorkPlaneABC = und... 638
function setIGHRPIBAB(abc) { 639 for (var 1 = 8; i ¢ activeFeeds.length; ++i) {
. 640 var feedContext = activeFeeds[i];
if ¢! ((current SRR ABC =... 641 writeBlock("#" + (firstFeedParameter + feedContext.id) + "=" +
areDifferent(abcx, currentWo.. 642 }
areDifferer , currentiWo., 643 }
areDifferent(abcz, cu tWo.. 644
currentWOrkPIBNEAEC = abe: 645 var currentWorkPlaneABC = undefined;

646

function getWorkPlanehachi...
647 function forcelorkPlane() {

function getworkPlaneMachi...

) 648 currenthWorkPlaneABC = undefined;
orkPlane; // map to.. 649 }
ward = section.weorkPl... A5A

Searching for a Text String in the Opened Files

There are options that are available when searching for text strings. These options are controlled using
the icons in the Search dialog and Find popup.

Icon Description

Az When enabled, the case of the search string must be the same as the matching text
string in the file.

When enabled, the entire word of the matching text string in the file must be the
same as search string. When disabled, it will search for the occurrence of the search
string within words.

[| When enabled, the " character can be used as a single character wildcard and the "*'
character can be used as a multi-character wildcard in the search string.

> Search forward in the file. In the Find popup only.

€ Search backward in the file. In the Find popup only.

= Searches for the text string only in the selected text in the file. In the Find popup
window only.

x Closes the Find popup window.

< Refresh the results window. In the Search flyout only.

al Collapse all expanded files in the results window. In the Search flyout only.

Displays fields that allow you to include or exclude certain files from searches. In
the Search flyout only.

b Displays the Replace field, allowing you to replace the Search text with the Replace
field text.

b Replaces the current (highlighted) occurrence of the Search text with the Replace
field text. Hitting the Enter key while in the Replace field performs the same
replacement. In the Find popup window only.

= Replaces all occurrences of the Search text with the Replace field text. When

initiated from the Search flyout, all occurrences of the text in all files listed in the
Results window will be replaced.

Search and Replace Options

Autodesk Post Processor Editor 2-33

4 AUTODESK cAM Post Processor Guide 8/8/23

2.3.3 Bookmarks Flyout

Bookmarks

Okay, so the Bookmarks flyout is actually a Breakpoints flyout, but since JavaScript does not have an
interactive debugger we are going to use it for adding bookmarks to the opened files. Placing the cursor
to the left of the line number where you want to set a bookmark will display a red circle and then
clicking at this position will add the bookmark.

To see the active bookmarks you can open the Bookmarks flyout and expand the BreakPoints window.
You can then go directly to a line that is bookmarked by selecting that line in the Bookmarks flyout.
Bookmarks set in all opened files will be displayed in the flyout and the file that the bookmark is set in
will automatically be made the active window when the bookmark is selected.

4]« haas ds-30y.cps - Lathe Changes - Visual Studic Code [Administrator] _
File Edit Selection View Go Debug Tasks Help
JEBUG | P |NoCor ¥ | f1* haas ds-30y.cps @
» VARIABLES e)) .) . . .
711 var direction = machineConfiguration.getDirection(
AL 712 if (!isSameDirection(direction, W.forward)) {
b CALL STACK 713 error(localize("Orientation not supported.™));
4 BREAKPOINTS 714 }
| haas ds-30y.cps 716 715
® 716 if (!machineConfiguration.isABCSupported(abc)) {
717 error(
718 localize("Work plane is not supported”) + ":"
719 + conditional(machineConfiguration.isMachineCo

Using the Bookmarks Flyout

2.3.4 Extensions Flyout

Extaensions

Visual Studio Code is an open source editor and there are many extensions that have been added to it by
the community. For example, the Autodesk Fustion 360 Post Processor Utility is an extension to this
editor. By opening the Extensions flyout you can see what extensions you have installed and what
extensions have updates waiting for them.

Autodesk Post Processor Editor 2-34
»4d AUTODESK CAM Post Processor Guide 8/8/23

|’;_=_=':I‘ Extensions in Marketplace
4 EMABLED 3

Autodesk Fusion 360 Post ... 220

Post processor utility.

Autodesk 03

CopyPlainText -0z

Copy plain text with no formatting.

Matthew Bolger 03

ESLint 172

Intanratac EClLint lawaSerint imta

Viewing Installed Extensions

If there is an Update to x.x.x button displayed with the extension you can press this button to install the

latest version of the associated extension.

You can search the Visual Studio Marketplace for extensions that are beneficial for your editing style by
typing in a name in the Search Extensions in Marketplace field. For example, if you want a more
dedicated way to set bookmarks you can type in bookmark in this field and all extensions dealing with
adding bookmarks will be displayed. You can press the green Install button to install the extension.

You can also search for extensions online at the Visual Studio Marketplace.

B & & = &

Prettier - Code forr REST Client Java Extension Pack Jupyter Azure Functions vscode-styled-comy

.........................

Viewing Extensions in the Online Marketplace

2.4 Autodesk Post Processor Editor Features

The Autodesk Post Processor editor has features to enhance the ease of editing of post processor
JavaScript files. One example is the color coding of the text, variables are in one color, functions in
another, JavaScript reserved words in yet another, and so on. The colors of each entity is based on the

Workbench Color Theme setting.

Autodesk Post Processor Editor 2-35

4 AUTODESK cAM Post Processor Guide 8/8/23

https://marketplace.visualstudio.com/

This section will go over some of the more commonly used features. You are sure to discover other
features as you use the editor.

2.4.1 Auto Completion

As you type the name of a variable or function you will notice a popup window that will show you
previously used names that match the text as it is typed in. Selecting one of the suggestions by using the
arrow keys to highlight the name and then the tab key to select it will insert that name into the spot
where you are typing.

If the Editor: Parameter Hints setting is set to true, then when you type in the name of a function,
including the opening parenthesis, you will be supplied the names of the function's arguments for
reference.

var current

var abc = n[E current
if (machine = currentCoolantMode s
// set wo [currentFeedId
[E] currentMachineABC
if (_sect[® currentPattern
cancelT|E currentSection
abc = _ [currentSubprogram
if (_se[® currentWorkOffset
force [currentWorkPlaneABC
onCom =] getCurrent
gMoti [getCurrentDirection
write = getCurrentPosition

T T P R I S s)

Using Auto Completion

2.4.2 Syntax Checking

If you have a syntax error while editing a file, the editor is smart enough to flag the error by
incrementing the error count at the bottom left of the window footer and marking the problem in the file
with a red squiggly line. You can open the Problems window by selecting the X in the window footer to
see all lines that have a syntax error. Clicking on the line displaying the error will then take you directly
to that line, so that you can resolve the error.

You can close the window by pressing on the X in the window footer or the X at the top right of the
Problems window.

Autodesk Post Processor Editor 2-36
»4d AUTODESK CAM Post Processor Guide 8/8/23

Ba3
844
845
846
847
848
849
850
851
852
853
854

PROBLEMS

var anc = new vector(v, ¥, v);
if (machineConfiguration.isMultiAxisConfiguration() f // use 5-axis indexing for multi-axis mode
// set working plane after datum shift fu\

if (_section.isMultiAxis()) {
cancelTransformation();
abc = _section.getInitialToolAxisABC();
if (_setWorkPlane) {
forceWorkPlane();
onCommand (COMMAND_UNLOCK_MULTI_AXIS);
gMotionModal.reset();
writeBlock(

OUTPUT DEBUG CONSOLE

Filter by type o

haas with a-axis sample.cps erss B
® [eslint] Parsing error: Unexpected token { (344, 55)

o [

)" expected. (844, 55

Ln 844, Col 55 Spaces: 2

Displaying Syntax Errors

2.4.3 Hiding Sections of Code

You can hide code that is enclosed in braces {} by positioning the cursor to the right of the line number
on the line with the opening brace and then pressing the [-] icon. The code can be expanded again by
pressing the [+] icon. Note that the icons will not be displayed unless the cursor is placed in the area
between the line number and the editing window.

836
837
838
839
840
841
842
843
844
845
846
847
848
849
858

var currentWorkPlaneABC = undefined;
-l function forceWorkPlane() {
currentlorkPlaneABC = undefined;

}

- function definelWorkPlane(_section, _setlWorkPlane) {
var abc = new Vector(®, @, @);
- if (machineConfiguration.isMultifAxisConfiguration()) { // use 5
// set working plane after datum shift

-4 if (_section.isMultifxis()) {
cancelTransformation(};
abc = section.getInitialToolAxisABC();
- if (_setWorkPlane) {
forceWorkPlane();

Hiding Sections of Code

2.4 .4 Matching Brackets

If you place the edit cursor at a parenthesis (()), bracket ([]), or brace ({}) the editor will highlight the
selected enclosure as well as the opening/closing matching enclosure character. If there are multiple
enclosure characters right next to each other, then the enclosure following the edit cursor will be
selected. If the enclosure character does not highlight, then this means that there is not a matching
opening/closing enclosure.

Autodesk Post Processor Editor 2-37

va AUTODESK cAM Post Processor Guide 8/8/23

writeBlock(
gMotionModal.format(®@),
conditional({machineConfiguration.isMachineCoordinate(8), "A" + abcFormat.format(abc.x)),
conditional({machineConfiguration.isMachineCoordinate(1), "B" + abcFormat.format{abc.y)),
conditional{machineConfiguration.isMachineCoordinate(2), "C" + achormat.fol‘mat{abc.z:'}

Matching Parenthesis

2.4.5Go to Line Number

You can go to a specific line number in the file by pressing the Ctrl+G keys and then typing in the line
number.

—_—

a

76

Go to ine

(9S8

Go to Line Number

2.4 .60pening a File in a Separate Window

You can open a file in the current window by selecting the File->Open File... menu from the task bar or
by pressing the Ctrl+0 keys. You can open the active file in a separate VSC window by pressing the
Ctrl+K keys and then pressing the O key. The file will be opened in the a new window and remain open
in the active window. You can also open a new VSC window by selecting the File->New Window menu
or by pressing the Ctrl+Shift+N keys.

__"‘J # haas with a-axis sample.cps - Visual Studio Code [Admini

File Edit Selection View Go Debug Tasks Help

Mew File

E> Mew Window Crl=Shift+N
Open File... Hold Ctrl Eey Down
Open Folder... [Col+K Cirl+0]

Open Workspace_.

Open Recent k

Open Separate VSC Window

2.4.7 Shortcut Keys

You can display the assigned Shortcut Keys by pressing the F1 key and then typing in key to display all
commands referencing the key string. Select the Preferences: Open Keyboard Shortcuts menu. You
can also press the Ctrl+K Ctrl+S keys in sequence to display the Shortcut Keys window.

Autodesk Post Processor Editor 2-38
»4d AUTODESK CAM Post Processor Guide 8/8/23

~ Preferences: Open Keyboard Shortcuts <: @ Ctd + K Cird + S

Help: Keyboard Shortcuts Reference Ctrl |+ K Ctd + R
Preferences: Keymaps Cirl + K | Ctd + M
Preferences: Open Keyboard Shortcuts File

Display the Shortcut Keys

o} Keyboard Shertcuts X User Settings m -

Search keybindings

Command Keybinding Source When

[[Ait 1 UpArrow | Default editorTextFocus
Ctrl |+ At + DownArmow edit Focus

Close All Editors
Close

fication Messages

Close Notification Messages

Compare Active File with Clipboard
Continue

Copy
Copy trl + Insert
Copy

Pafa.

Modifications and/or additions to the Shortcut Key assignments can be made by selecting the
keybindings.json link at the top of the page. This will open a split window display that displays the
default Shortcut Keys in the left window and the user defined Shortcut Keys in the right window. Use
the same procedure as modifying a setting to modify a Shortcut Key, by copying the binding definition
from the left window into the right window and making the desired changes. Be sure to save the
keybindings.json file after making your changes.

The format of the keystrokes that represent a single Shortcut is defined in the following table.

Shortcut Sample Description

key F1 Press the single key.

key+key Ctrl+Shift+Enter key is the name of the key to press. The + character means that

the keys must be pressed at the same time. The + key is not

pressed.

key key Ctrl+K Ctrl+S The keys should be pressed in sequence, one after the other.

Each key can be a combination of multiple keys that are pressed

at the same time as explained above. Unless Shift is part of the

key sequence, then lower case letters are being specified.
Shorcut Key Syntax

Autodesk Post Processor Editor 2-39
»4d AUTODESK CAM Post Processor Guide 8/8/23

2.4 .8 Running Commands

The commands accessible by shortcut keys or the menus can be found and run from the command popup
dialog and are accessed in the editor by pressing the F1 key. Once the command popup is displayed you
can search for commands by typing in text in the search line. The commands that match the search will
be displayed along with the Shortcut Keys that are assigned to the commands. Select on the command to
run it.

+ Preferences: Open Keyboard Shortcuts Gl + K Cil + S
: Preferences: Open User Settings Cirl +

{ Preferences: Azure Extensions

t Preferences: Cc

' Preferences: Conf
Preferences: Conf
| Preferences: F
, Preferences: ke
+ Preferences: L
| Preferences: Open Fo
i Preferences: Open Keyboard Shor

! Preferences: Open Raw Default Settings

'R'unning a Command

2.5 Running/Debugging the Post

The Autodesk Fusion 360 Post Processor Utility extension allows you to run the post processor that you
are editing directly from the editor and to debug the post by matching the output lines in the NC file with
the code line that generated the output. You can run the post against the provided intermediate files

generated from the Benchmark Parts or you can create your own intermediate file to run the post against.

2.5.1 Autodesk Post Processor Commands

There are built-in commands that pertain to running the post processor. These commands are accessed
by pressing the F1 key and typing HSM in the search field.

HSM: Post Utility
HSM: Change post executable
HSM: sho ed code

HSM: Delete

HSM: Disable auto line selection

HSM: Download CNC exporting post processor
HSM: Post help

T
i
i

Displaying the Autodesk Post Processor Commands

The following table describes the available commands.

Autodesk Post Processor Editor 2-40
»4d AUTODESK CAM Post Processor Guide 8/8/23

Command Description

Post Utility Displays a menu where you can post process the
selected intermediate (CNC) file against the open
post processor, select a new CNC file, or display
the Autodesk Post Help window. You can also
use the shortcut Ctrl+Alt+G to run the post

processor.
Change post executable Sets the location of the post processor engine
executable.
Show debugged code Displays the entry functions that are called and

the line numbers that generated the block in the
output NC file. This is the same output that is
displayed when you call the setWriteStack(true)
and setWritelnvocations(true) functions.

Delete CNC file This command cannot be run from the
Commands menu. Right clicking on a CNC file
in the CNC Selection list and selecting Delete
CNC File will delete the file and remove it from
the list.

Disable auto line selection Disables the feature of automatically displaying
the line in the post processor that generated the
selected line in the NC output file.

Download CNC exporting post processor Downloads the Exporting Post Processor used
for generating your own CNC files for testing.
Post help Displays the online AutoDesk CAM Post

Processor Documentation web page.
The Autodesk Post Processor Commands

2.5.2 The Post Processor Properties

You can display the properties associated with the open post processor by opening the Explorer flyout
and expanding the Post Properties list. Clicking on a property will prompt you to change the property.

The @ symbol will be displayed next to the property if it has been changed from the default value.

If you add a new property to the post or for some reason the properties don’t display, you can press the
yellow refresh symbol in the Post Properties header to refresh the displayed properties.

Autodesk Post Processor Editor 2-41
»4d AUTODESK CAM Post Processor Guide 8/8/23

2.5.3 Running the Post Processor

b OPEN EDITORS 267

» NO FOLDER OPENED 2678 e
» OQUTLINE N
2680
» CNC SELECTOR 2681
» FUNCTION LIST 2682
4 POST PROPERTIES 2683
writeMachine : true 2684
writeTools : true 2685
2686
@ preloadTool : false 2687
showSequenceMumbers : true 7688
sequenceMumberStart : 10 2689

(PLORER bra | 'preloadTool' (current setting: ‘false’)

if (currentSection.isMultifAxis() && !¢
writeBlock(gFormat.format(49));

3

setSmoothing(false);
// writeBlock{gPlaneModal.format(17));

if {((getCurrentSectionId() + 1) >= ge
| (tool.number != getNextSection().g
onCommand { COMMAND_BREAK_CONTROL) ;

Modifying the Post Properties

To run the post processor that is open in the editor you can use the Ctrl+Alt+G shortcut or run the Post
Utility from the Command window as described in the previous section. First you will need to select the
intermediate CNC file to run the post against. You select the CNC file by opening the Explorer flyout
and expanding the CNC Selector list until you find the desired CNC file.

ﬂ # haas with a-axis sample.cps - Lathe Changes - Visual Studio Code [Ad mlnlstrm I

EXPLORER
b OPEN EDITORS
b LATHE CHANGES
b VARIABLE LIST
b FUNCTION LIST
4 CNC SELECTOR
b Custom
b Cutting
b Mill-Turn
4 Milling
4 2D
bore.cnc
compensation.cnc
face.cnc
full program.cnc
optional stop.cnc
toolchange.cnc
b 3+2

» Sx Simultaneous

File Edit Selection View Go Debug Tasks Help

haas with a-axis sample.cps ®

359
368
361
362
363
364
365
366
367
368
369
37e
7
372
373
374
375
376
377
378
379

)i
} else { // use M
writeOptionalBl
writeOptionalBl
gFormat.forma
"pgggs”,
"AB.",
"B" + getHaas
"C" + getHaas
"T" + toolFor
E" + xyzForm
D" + xyzForm
"K" + wyzForm
"I8."
}; // probe too
}
i

function onOpen() {
if (properties.us
gFeedModeModal.

Post the Selected CNC File Against the Active Post

You can also select the CNC file from the Post Utility menu.

L
m

Change CMNC file

Post process

Help

ct the required command

Select the CNC File or Post Processor Using the Post Utility Command

va AUTODESK cAM Post Processor Guide 8/8/23

Autodesk Post Processor Editor 2-42

If running a post processor for the first time in the editor it is possible that the location of the post engine
executable (post.exe) is not known. In this case you will see the following message displayed.

Emor Post processor executable cannot be found. Please select your post executable location Browse.. Close

You can press the Browse... button to search for post.exe. The executable will be in one of the
following locations depending on the version of HSM being run.

HSM Version Post Executable Location
Fusion 360 C:\User\username\AppData\Local\Autodesk\webdeploy\production\(id)\Applications\CAM360

username is your username that you logged in as. (id) is a unique and long name that changes
depending on the version of Fusion 360 that you have installed. You will usually select the folder
with the latest date.

Inventor C:\Program Files\Autodesk\Inventor CAM yyyy

yyyy is the version number (year) of Inventor.
HSMWorks C:\Program Files\HSMWorks
Post Executable Locations

Once you have posted against the CNC file, the output NC file or Log file will be displayed in the right
panel of the split screen. When the HSMPostUTtility: Enable Auto Line Selection setting is true, then
clicking twice on a line in the output NC file will highlight the line in the post processor that generated
the output. The second click must be on a different character on the same output line to highlight the
line. Then, by clicking on a different character in the same line you will be walked through the stack of
functions that were called in the generation of the output.

haas with a-axis sample.cps X as ds-3 e m - debugged
P 11 wpruperues.useater) %
122;) writeG187(); 5 001005
3 (Using high feed G1 F5000. instead of GO©.)
144 . » . .4 (1 D=50. CR=0. - ZMIN=-1. - face mill)
144? \f'ar initialPosition = getFramePosition{currentSect: 5 N1® 698 Go4 G17
1446 if (!retracted) { 5 NS 621
1447 if (getCurrentPosition().z < initialPosition.z) { 7 N20 G53 GO 70.
1448 writeBlock(gMotionModal. format(@), zOutput.forr s _
13;1;) zIsOutput = true; 9 (2D-Face)
1851 } 1e N3@ T1 M6
1452 11 N35 S5800 M3
12 N4@ G54
1453 if (insertToolCall || retracted) { 13 nas M1
1454 var lengthOffset = tool.lengthOffset; 1 NS5O GO AD.
1455 if (lengthoffset > 200) { 15 NS5 M10
1456 error(localize("Length offset out of range.”));:

i i 16 NeB Mg
o | return; 17 N70 GO X8@. Y-24.375 <:|
T 18 w7s Ga3 7115, W1

a
1a5e 19 N8@ GO I5.

e || SO o 0 WG i o,
. & : a7 21 N9O X-80.
1463 if (!machineConfiguration.isHeadConfiguration()) 2 N9S G2 ¥0.95 10. 712.663
raa e g : 3 23 N1e@ G1 XsO.
0 uriteBlock(24 N185 GO 715.
1465 gAbsIncModal. format(90),
1466 | gMotionModal. format (@), xOutput.format(initi: s
i:i;)'i"t Elock(27 N115 M9
i ""INEt,UCM dal. format (0) 28 N120 653 GO Z0.
|| || et e
grormat. format(43), . 30 N130 GO AO.
1471 zOutput.format(initialPosition.z), 31 N135 M1
1472 hFormat. format(lengthOffset) 1 N145 X.
1473 bH
1474 } else { 33 N158 G53 Ye.
. 34 N155 M3@
1475 writeBlock(.

Autodesk Post Processor Editor 2-43
»4d AUTODESK CAM Post Processor Guide 8/8/23

Output NC File, Click Twice on Output Line to See Code that Generated Output

2.5.4 Creating Your Own CNC Intermediate Files

The Autodesk Post Processor extension comes with built-in CNC intermediate files that are generated
using the HSM Benchmark Parts. These can be used for testing most aspects of the post processor, but
there are times when you will need to test specific scenarios. For these cases you can create your own
CNC file to use as input.

First you will need to download the export cnc file to vs code.cps post processor. You can do this by
running the Download CNC exporting post processor command.

= -15““|

H5M: Show debugged code

HSM: Post Utility

HSM: Post help

HSM: Change post executable
HSM: Delete CNC File

HS5M: Disable auto line selection

HSM: Download CNC exporting post processor <:

Download the CNC Exporting Post Processor

A file browser will come up that allows you to select the folder where you want to download the post.
Follow the directions in the Downloading and Installing a Post Processor section for installing a post
processor on your system.

Once the post processor is installed you will want to post process the operations you want to use for
testing. The CNC exporting post processor is run just like any other Autodesk post processor, except it
will not generate NC code, but will rather create a copy of the CNC file from the Autodesk CAM system
in the Custom location of the CNC Selector folder. Most posts use a number for the output file name, it
is recommended that you give the CNC file a unique name that describes the operations that were used
to generate it.

Post Configuration
1 Success, your CNC file "polar.cnc" is now located in

Export CNC file to Visual Studio Cade / expart onc file to vs code "C:\Users\username\ .vscode\extensions\Autodesk.hsm-post-processor-
£ 1.11.6\res\CNC files\Custom"™ and you can select it in V5 Code.

File Edt Find View Navigate Help

Output folder
C:\Users'schultb \AppData'Local \Fusion 360 CAMinc

Program Settings

Program name or number
Property

palar .
(Built-in) Allow helic

Program comment

[i]) High feedr|
(Built-in) Maximum d

Primary spindle operations

Create a Custom CNC Intermediate File

Once you click the yellow refresh button you should see the CNC file in the Custom branch of the CNC
Selector list and can use it when post processing from the VSC editor. If you decide that you no longer

Autodesk Post Processor Editor 2-44
»4d AUTODESK CAM Post Processor Guide 8/8/23

need a custom CNC intermediate file you can delete it by right clicking on the CNC file and select
Delete CNC File.

EXPLORER EXPLORER ha:

b OPEM EDITORS b OPEM EDITORS 2837

2838

b LATHE CHANGES b LATHE CHANGES -

b VARIABLE LIST b VARIABLE LIST 2840

b FUNCTION LIST b FUNCTION LIST 2841

4 CNC SELECTOR 4 CNC SELECTOR 2842

“ Custom 4 Custom 2843

polar.cnc polar.cnc 2844
Delete CHC File

b Cutting b Cutting P

. - - . = .) IOAE
Using a Custom CNC Intermediate File Deleting a Custom CNC Intermediate File

3 JavaScript Overview

3.1 Overview

Autodesk post processors are written using the JavaScript language. It resembles the C, C++, and Java
programming languages, is interpreted rather than being a compiled language, and is object-orientated.
JavaScript as it is used for developing post processors is fairly simple to learn and understand, but still

retains its complex nature for more advanced programmers.

This chapter covers the basics of the JavaScript language and conventions used by Autodesk post
processors. There are many web sites that document the JavaScript language. The ELOQUENT
JAVASCRIPT site has a nicely laid out format. If you prefer a hard copy JavaScript guide, then the
JavaScript the Definitive Guide, Author: David Flanagan, Publisher: O Reilly is recommended.
Whichever manual you use, you will want to focus on the core syntax of JavaScript and ignore the
browser and client-side aspects of the language.

The Autodesk post processor documentation is provided as the post.chm file with HSMWorks and
Inventor CAM or you can visit the Autodesk CAM Post Processor Documentation web site. You will
find that the post.chm version of the documentation is easier to view, since it has a working Index.

3.2 JavaScript Syntax

JavaScript is a case sensitive language, meaning that all functions, variables, and any other identifiers
must always be typed exactly the same with regards to lower and uppercase letters.

currentCoolant=7;
currentCoolant = 8;
currentcoolant = 9;

Case Sensitive Definition of 3 Different Variables

JavaScript Overview 3-45

4 AUTODESK cAM Post Processor Guide 8/8/23

http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://cam.autodesk.com/posts/reference/index.html

JavaScript ignores spaces and new lines between variables, operators, names, and delimiting characters.
Variable and function names cannot have spaces in them, as this would create separate entities.
Commands can be continued onto multiple lines and are terminated with a semicolon (;) to mark the end
of the logical command. If you are defining a string literal within quotes, then the literal should be
defined on a single line and not on multiple lines. If a text string is too long for a single line, then it
should be concatenated using an operation.

message = "The 3 inch bore needs to be probed prior to starting " +
"the next operation.";

Breaking Up a Text String onto Multiple Lines

There are two methods of defining comments in JavaScript. You can either enclose comments between
the /* and */ characters, which will treat all text between these delimiters as a comment, or place the //
characters prior to the comment text.

The /* comment */ format is typically used as the descriptive header of a function or to block out
multiple lines of code. Any characters on the line that follow the // characters are treated as a comment,
S0 you can have a single comment line or add a comment to the end of a JavaScript statement.

/**
Output a comment.

*/

function writeComment(text) {
writeln(formatComment(text)); // write out comment line

¥

[x

switch (unit) {

case IN:
writeBlock(gUnitModal.format(20));
break;

case MM:
writeBlock(gUnitModal.format(21));
break;

X
*/

Comment Lines

Using indentation for function contents, if blocks, loops and continuation lines is recommended as this
makes it easier to visualize the code. Tab characters, though supported by JavaScript, are discouraged
from being used. It is preferred to use virtual tab stops of two spaces for indenting code in post
processor code. Most editors, including the Autodesk Post Processor Editor can be setup to
automatically convert tab characters to spaces that will align each indent at two spaces. Please refer to
the Post Processor Editor chapter for an explanation on how to setup the Autodesk recommended editor.

JavaScript Overview 3-46

4 AUTODESK cAM Post Processor Guide 8/8/23

function test (input) {

/I indent 2 spaces inside of function

if (input==1){

writeBlock(// indent 2 more spaces in if block or loop
gAbsincModal.format(90), // indent 2 more spaces for continuation lines

gMotionModal.format(0)
i

}
}

Indent Code 2 Spaces Inside Function, If Block, Loop, and Continuation Line

3.3 Variables

Variables are simply names associated with a value. The value can be a number, string, boolean, array,
or object. Variables in JavaScript are untyped, meaning that they are defined by the value that they have
assigned to them and the value type can change throughout the program. For example, you can assign a
number to a variable and later in the program you can assign the same variable a string value. The var
keyword is used to define a variable.

If a variable is not assigned a value, then it will be assigned the special value of undefined.

var a; /Il define variable 'a’, it will have the value of undefined
varb =1, // assign a value of 1 to the variable 'b'

var ¢ = "text"; //assign a text string to the variable ‘c'

c=2.5; /['c' now contains a number instead of string

Variable Definitions

While you can include multiple variable declarations on the same var line, this is against the standard
used for post processors and is not recommended. You can also implicitly create a variable simply by
assigning a value to the variable name without using the var keyword, but is also not recommended.
When declaring a new variable, be sure to not use the same name as a JavaScript or Post Kernel
keyword, for example do not name it var, for, cycle, currentSection, etc. Refer to the appropriate
documentation for a list of keywords/variables allocated in JavaScript or the Post Kernel.

JavaScript supports both global variables and local variables. A global variable is defined outside the
scope of a function, for example at the top of the file prior to defining any functions. Global variables
are accessible to all functions within the program and will have the same value from function to
function. Local variables are only accessible from within the function that they are defined. You can
use the same name for local variables in multiple functions and they will each have their own unique
value in the separate functions. Unlike the C and C++ languages, local variables defined within an if
block or loop are accessible to the entire function and are not local to the block that they are defined in.

JavaScript Overview 3-47

4 AUTODESK cAM Post Processor Guide 8/8/23

3.3.1 Numbers

Besides containing a standard numeric value, a variable assigned to a number creates a Number object.
For this discussion, we will consider an object a variable with associated functions. These functions are

specific to numbers and are listed in the following table.

Function Description Returns

toExponential(digits) Format a number using exponential String representation of number
notation

toFixed(digits) Format a number with a fixed number | String representation of number
of digits

Format a number according to locale

toLocaleString() rormata n

String representation of number

Format a number using either a fixed
number of digits or using exponential
notation depending on value of
number

toPrecision(digits)

String representation of number

Format a number

toString()

String representation of number

Number Object Functions

vara =12.12345;

b = a.toExponential(2); //b="1.21e+1"
b = a.toFixed(3); /[b="12.123"

b = a.toString(); /b ="12.12345"

Sample Number Output

The JavaScript built-in Math object contains functions and constants that apply to numbers. The
following table lists the Math functions and constants that are most likely to be used in a post processor.

All Math functions return a value.

Function Return value

Math.abs(x) Absolute value of x

Math.acos(x) Arc cosine of x in radians

Math.asin(x) Arc sine of x in radians

Math.atan(x) Arc tangent of x in radians

Math.atan2(y, X)

Counterclockwise angle between the positive X-axis and the point X,y in radians

Math.ceil(x) Rounds up x to the next integer

Math.cos(x) Cosine of x

Math.floor(x)

Rounds down x to the next integer

Math.max(args)

The maximum value of the input arguments

Math.min(args)

The minimum value of the input arguments

Math.PI

The value of PI, approximately 3.14159

Math.pow(X, y)

X raised to the power of y

Math.round(x)

Rounds x to the nearest integer

Math.sin(x) Sine of x
Math.sgrt(x) Square root of x
Math.tan(x) Tangent of x

JavaScript Overview 3-48

4 AUTODESK cAM Post Processor Guide 8/8/23

Function Return value
Math.NaN The value corresponding to the not-a-number property

Math Object

a = Math.sqrt(4); lla=2
a = Math.round(4.59); Ila=5
a = Math.floor(4.59); lla=4
a = Math.PlI, /la=3.14159

a = Math.cos(toRad(45)); /la=.7071

a = toDeg(Math.acos(.866)); //a =60
Sample Math Object Output

The Math trigonometric functions all work in radians. As a matter of fact, most functions that pass
angles in the post processor work in radians. There are kernel supplied functions that are available for
converting between radians and degrees. toDeg(x) returns the degree equivalent of the radian value x
and conversely the toRad(x) function returns the radian equivalent of the degree value x.

There are also standalone numeric functions that are not part of the Number of Math objects. These are
listed in the following table.

Function Return value

parseFloat(value) Parses value as a string argument and returns a real number.
Returns NaN if the string does not represent a valid number.

parselnt(value, radix) Parses value as a string argument and returns an integer of the

specified radix. radix is typically defined as 10, but can be 2, 8,
16, etc. Returns NaN if the string does not represent a valid
integer.

spatial(value, unit) Returns value converted to MM. unit specifies the units that value
is defined in and can be either MM or IN. The unit conversion
scale used is 25mm to 1in and not 25.4. This conversion creates a
more acceptable scaled value for display, for example 4in scales to
100mm instead of 101.6mm. The spatial function is typically used
to define the Built-in properties at the top of the post processor,
since they are referenced as MM in the post engine.
toPreciseUnit(value, unit) Returns value converted to the output units. unit specifies the units
that value is defined in and can be either MM or IN A scale factor
of 25.4mm to lin is used.

toUnit(value, unit) Returns value converted to the output units. unit specifies the units
that value is defined in and can be either MM or IN. The unit

conversion scale used is 25mm to 1lin and not 25.4.
Other Numeric Functions

3.3.2 Strings

Variables assigned a text string will create a String object, which contain a full complement of functions
that can be used to manipulate the string. These functions are specific to strings and are listed in the

JavaScript Overview 3-49

4 AUTODESK cAM Post Processor Guide 8/8/23

following table. The table details the basic usage of these functions as you would use them in a post
processor. Some of the functions accept a RegExp object which is not covered in this manual, please
refer to dedicated JavaScript manual for a description of this object.

Function

Description

Returns

charAt(n)

Returns a single character at position n

The nth character

indexOf(substring, start)

Finds the substring within the string.
start is optional and specifies the
starting location within the string to
start the search at.

The location of the first occurrence of
substring within the string.

lastindexOf(substring, start)

Finds the last occurrence of substring
within the string. start is optional and
specifies the starting location within
the string to start the search at.

The location of the last occurrence of
substring within the string.

length

Returns the length of the string.

length is not a function, but rather a
property of a string and does not use ()
in its syntax.

The length of the string

localeCompare(target)

Compares the string with target string.

A negative number if string is less
than target, 0 if the strings are
identical, and a positive number if
string is greater than target

replace(pattern, replacement)

Replaces the pattern text within the
string with the replacement text.

The updated string.

slice(start, end)

Creates a substring from the string
consisting of the start character up to,
but not including the end character of
the string.

A substring containing the text from
string starting at start and ending at
end-1. A negative value for start or
end specifies a position from the end
of the string; -1 is the last character, -2
is the second to last character, etc.

split(delimiter, limit)

Splits a string at each occurrence of
the delimiter string.

An array of strings created by splitting
string into substrings at the delimiter.
A maximum of limit substrings will be
created.

toLocaleLowerCase()

Converts the string to all lowercase
letters in a locale-specific method.

Lowercase string.

toLocaleUpperCase() Converts the string to all uppercase Uppercase string.
letters in a locale-specific method.

toLowerCase() Converts the string to all lowercase Lowercase string.
letters.

toUpperCase() Converts the string to all uppercase Uppercase string.
letters.

String Object Functions

var a = "First, Second, Third";
b = a.charAt(3);

b = a.indexOf("Second");

b = a.length;

b = a.localeCompare("ABC");
b = a.replace(/,/g, "-");

b = a.slice(0, -7);

I[b="g"
Hb=7
IIb=20
Ilb=5;

/' b = "First- Second- Third"
/I b = "First, Second"

4 AUTODESK cAM Post Processor Guide 8/8/23

JavaScript Overview 3-50

b = a.split(","); /1 b[0] = "First", b[1] = "Second", b[2] = "Third";
b = a.toLowerCase() ; /I'b = "first, second, third"

b = a.toUpperCase(); /b ="FIRST, SECOND, THIRD"
Sample String Output

3.3.3 Booleans

Booleans are the simplest of the variable types. They contain a value of either true of false, which are
JavasScript keywords.

var a = true; // 'a' is defined as a boolean

if (a) {

Il processes the code in this if block since 'a' is 'true’

}

Sample Boolean Assignment

3.3.4 Arrays

An array is a composite data type that stores values in consecutive order. Each value stored in the array
is considered an element of the array and the position within an array is called an index. Each element
of an array can be any variable type and each element can have a different variable type than the other

elements in the array.

An array, like numbers and strings, are considered an object with functions associated with it. You can
define an array using two different methods, as an empty array using a new Array object, or by creating
an array literal with defined values for the array. You can specify the initial size of the array when
defining an Array object. The initial size of an array defined with values is the number of values
contained in the initialization.

var a = new Array(); /I creates a blank array, all values are assigned undefined
var a = new Array(10); /I creates a blank array with 10 elements

var a = [true, "a", 3.17]; /I creates an array with the first 3 elements assigned
vara = [{x:1, y:2}, {x:3, y:4}, {x:5, y:6}]; // creates an array of 3 Xy objects

Array Definitions

You can access an array element by using the [] brackets. The name of the array will appear to the left
of the brackets and the index to the element within the array inside of the brackets. The index can be a
simple number or an equation.

vara=1[1, 2, "text", false];

b = a[0]; Ib=1

a[b] ="next"; /la=11,2, "text", false, "next"]
b = a[2+a[0]], // b = false,

Accessing Elements Within an Array

JavaScript Overview 3-51

4 AUTODESK cAM Post Processor Guide 8/8/23

The Array object has the following functions associated with it.

Function

Description

Returns

concat(values)

Appends the values to an array.

Original array with concatenated
elements

join(separator)

Combines all elements of an array into
astring. separator is optional and
specifies the string used to separate the
elements of the array. The default is a
comma.

String containing array elements.

length Returns the allocated size of the array. | The size of the array.
length is not a function, but rather a
property of an array and does not use
() in its syntax.
pop() Pops the last element from the array The value of the last element of the

and decreases the size of the array by
1

array.

push(values)

Pushes the values onto the array and
increases the size of the array by the
number of values.

Updated size of array.

reverse()

Reverses the order of the elements of
the array.

Returns nothing, but rather modifies
the original array.

shift(values)

Removes the first element from the
array and decreases the size of the
array by 1.

The value of the first element of the
array.

slice(start, end)

Creates a new array consisting of the
start element up to, but not including
the end element of the array.

An array containing the elements from
array starting at start and ending at
end-1. A negative value for start or
end specifies a position from the end
of the array; -1 is the last element, -2
is the second to last element, etc.

sort(function)

Sorts the elements of the array. The
original array will be modified. The
sort method uses an alphabetical order
of elements converted to strings by
default. You can specify a function
that overrides the default sorting
algorithm.

The sorted array.

toLocaleString()

Format an array according to locale
conventions

String representation of array

toString

Format an array

String representation of array

unshift()

Adds the values to the beginning of an
array and increases the size of the
array by the number of values.

Updated size of array.

Array Object Functions

vara=1[1,2,3,4,5,6,7,8];

b =a.concat(9, 10, 11); //b=1]1,2,3,4,5,6,7,8,9, 10, 11]

b =a.join(","); Ilb="1,2,3,4,5,6,7,8"

b = a.length; II'b=28

a.push(9, 10, 11) lla=1]1,2,3,4,5,6,7,8,9,10, 11]

b =a.pop(); /la=1]1,2,3,4,56,7,8,9,10],b=10

4 AUTODESK cAM Post Processor Guide 8/8/23

JavaScript Overview 3-52

a.reverse(); /la=110,9,8,7,6,5,4,3,2,1]
b =a.unshift(12, 11); //a=[12,11,10,9,8,7,6,5,4,3,2,1],b=12
b = a.shift(); /la=[11,10,9,8,7,6,5,4,3,2,1],b=12
b = aslice(4, 7); II'b=17,6,5]
a.sort(function(a,b) { //a=]1,2,3,4,5,6,7,8,9,10, 11]
return a-b;

b

b = a.toString() /Ib="12345,6,78910,11"

Sample Array Output

3.3.50bjects

An Object is similar to an array in that it stores multiple values within a single variable. The difference
is that objects use a name for each sub-entity rather than relying on an index pointer into an array. The
properties table in a post processor is an object. You can define an object using two different methods,
explicitly using the Object keyword, or implicitly by creating an object literal with defined names and
values for the object. Each named entity within an object can be any type of variable, number, string,
array, boolean, and another object. Objects can also be stored in an array.

Obijects can be expanded to include additional named elements at any time and are not limited to the
named elements when they are created. You can reference the elements within an object using either the
name of the element (object.element) or by using a text string or variable (object["element"]) as the
name of the element. The following examples all reference the moveTime element of the status object.

var status = {moveDistance:0, moveTime:0, feedrate:0};

writeln("Move time =" + status.moveTime);
writeln("Move time = “ + status["moveTime"];
var element = "moveTime";

writeln("Move time =" + status[element];
Referencing Elements Within an Object

var a = new Object(); // creates a blank object, without named elements
vara={x:1,y:2, z:3}; /I creates an object for storing coordinates

a.feed = 10.0; /l adds the 'feed’ element to the 'a’ Object

a["feed"] = 10.0; / an alternate method for referencing the 'feed' element.
var a = [{x:1, y:2}, {x:3, y:4}, {x:5, y:6}]; // creates an array of 3 xy objects

Object Definitions

3.3.6 The Vector Object

The Vector object is built-in to the post processor and is used to store and work with vectors. The vector

components are stored in the X, y, z elements of the Vector object. Certain post processor variables are

stored as vectors and some functions require vectors as input. A Vector object is created in the same
JavaScript Overview 3-53

4 AUTODESK cAM Post Processor Guide 8/8/23

manner as any other object. Vector objects are typically used to store and work on vectors, spatial
points, and rotary angles.

var a = new Vector(); /I creates a blank Vector object

var a = new Vector(1, 0, 0); /I creates an X-axis vector {x:1, y:0, z:0}
ax=-1; /1 assigns -1 to the x element of the vector
setWorkPlane(new Vector(0, 0, 0)); /[defines a null vector inline

Sample Vector Definitions

The following tables describe the attributes and functions contained in the Vector object. Since an
attribute is simply a value contained in the Vector object, it does not have an argument.

Attribute Description

abs Contains the absolute coordinates of
the vector

length Contains the length of the vector

length?2

negated Contains the negated vector

normalized Contains the normalized/unit vector

X Contains the X-component

y Contains the Y component

Z Contains the Z component

Vector Attributes

You can directly modify an attribute of a vector, but if you do then the remaining attributes will not be
updated. For example, if you directly store a value in the x attribute, vec.x = .707, the length attribute of
the vector will not be updated. You should use the vec.setX(.707) method instead.

If the Returns column in the following table has Implicit, then there is no return value, rather the Vector
object associated with the function is modified implicitly. For this reason, if you are going to nest a
Vector function within an expression, do not use the Implicit function, but rather the equivalent function
that returns a vector.

Function Description Returns

divide(value) Divides each component of the object | Implicit
vector by the value

getCoordinate(coordinate) Returns the value of the vector Component of vector
component (0=x, 1=y, 2=2)

getMaximum() Determines the largest component Maximum component value
value in the vector

getMinimum() Determines the minimum component | Minimum component value
value in the vector

getNegated() Calculates the negated vector Vector at 180 degrees to the object

vector (vector * -1)

getNormalized() Calculates the normalized/unit vector | Normalized or unit vector

getX() Returns the X-coordinate of the vector | X-coordinate

getXYAngle() Calculates the angle of the vector in Angle of vector in XY-plane
the XY-plane

JavaScript Overview 3-54

4 AUTODESK cAM Post Processor Guide 8/8/23

Function Description Returns
getY() Returns the Y-coordinate of the vector | Y-coordinate
getZ() Returns the Z-coordinate of the vector | Z-coordinate

getZAngle()

Calculates the Z-angle of the vector
relative to the XY-plane

Z-angle of vector relative to the XY-
plane

isZero()

Determines if the vector is a null
vector (0,0,0)

True if it is a null vector

multiply(value) Multiplies each component of the Implicit
vector by the value
negate() Multiplies each component of the Implicit
vector by -1. Creates a vector at 180
degrees to the object vector
setCoordinate(coordinate, value) | Sets the value of the vector component | Implicit
(0=x, 1=y, 2=2)
setX() Sets the X-coordinate of the vector Implicit
setY() Sets the Y-coordinate of the vector Implicit
setZ() Sets the Z-coordinate of the vector Implicit
toDeg() Converts radians to degrees Angles in degrees
toRad() Converts degrees to radians Angles in radians
toString() Formats the vector as a string, e.g. String representation of vector

"(1,2,3)"

Vector Object Functions

Static functions do not require an associated Vector object.

Function

Description

Returns

Vector.cross(left, right)

Calculates the cross product of two
vectors

Vector perpendicular to the two
vectors

Vector.diff(left, right)

Calculates the difference between two
vectors

Left vector minus right vector

Vector.dot(left, right)

Calculates the dot product of the two
vectors

Cosine of angle between the two
vectors

Vector.getAbsolute()

Converts the vector components to
absolute values

Vector with absolute coordinates

Vector.getAngle()

Calculates the angle between two
vectors

Angle between the two vectors in
radians

Vector.getDistance(left, right)

Calculates the distance between two
vectors. Typically used when the
vectors store XYZ spatial coordinates
rather than vectors.

Distance between two points

Vector.getDistance2(left,right)

Calculates the square of the distance
between two vectors.

Squared distance between two points.

Vector.lerp(left, right, u)

Calculates a point at a percentage of
the distance between the two
coordinates. 'u' specifies the
percentage of the distance to create the
point at.

Point at a percentage of the line
between two points

Vector.product(vector, value)

Multiplies each component of the
vector by the value

Vector * value

Vector.sum(left, right)

Adds the two vectors

Left vector plus right vector

Static Vector Functions

4 AUTODESK cAM Post Processor Guide 8/8/23

JavaScript Overview 3-55

b = a.length(); /I b = length of Vector a

¢ = Vector.getAngle(a, b) /I ¢ = angle in radians between vectors a and b
var a = new Vector(1, 2, 1.5);

d = a.getMaximum(); /[d=2

b = Vector.getDistance(pointl, point2).normalized; // b = directional vector from pointl to point2

b = Vector.dot(vectorl, vector2); /l'b = cosine of angle between vectorl & vector2
b = a.negated; /I'b = vector at 180 degrees to Vector a

Sample Vector Expressions

3.3.7 The Matrix Object

The Matrix object is built-in to the post processor and is used to store and work with matrices. Matrices
are normally used when working with multi-axis machines, for 3+2 operations and for adjusting the
coordinates for table rotations. Matrices in the post processor contain only the rotations for each axis
and do not contain translation values.

Certain post processor variables are stored as matrices, such as the workPlane variable, and some
functions require matrices as input. A Matrix object has functions that can be used when creating the
matrix and are not dependent on working with an existing matrix.

Assignment Function Definition

Matrix() Identity matrix (1,0,0,0,1,0, 0,0,1)
Matrix(il, j1, k1, i2, j2, k2, i3, j3, k3) Canonical matrix

Matrix(scale) Scale matrix

Matrix(right, up, forward) Matrix using 3 vectors
Matrix(vector, angle) Rotation matrix around the vector

Matrix Assignment Functions

var a = new Matrix(); /[creates an identity matrix

var a = new Vector(-1, 0,0, 0,-1,0,0,0, 1); // creates a matrix rotated 180 degrees in the XY -plane
var a = new Matrix(.5); /I creates a half scale matrix

var a = new Matrix(new Vector(1, 0, 0), 30); // creates an X-rotation matrix of 30 degrees

Sample Matrix Definitions

The following tables describe the attributes and functions contained in the Matrix object. Since an
attribute is simply a value contained in the Matrix object, it does not have an argument.

Attribute Description

forward Contains the forward vector

nl Contains the length of the row vectors
of this matrix

n2 Contains the square root of this matrix
vector lengths

JavaScript Overview 3-56
»d AUTODESK cAM Post Processor Guide 8/8/23

Attribute

Description

Negated

Contains the negated matrix

right

Contains the right vector

transposed

Contains the inverse matrix

up

Contains the up vector

Matrix Attributes

You can directly modify an attribute of a matrix, but if you do then the remaining attributes will not be
updated. For example, if you directly store a vector in the forward attribute, the other attributes will not
be updated to reflect this modification. You should use the matrix.setForward(vector) method instead.

If the Returns column in the following table has Implicit, then there is no return value, rather the Matrix
object associated with the function is modified implicitly. For this reason, if you are going to nest a
Matrix function within an expression, do not use the Implicit function, but rather the equivalent function

that returns a matrix.

Function

Description

Returns

add(matrix)

Adds the specified matrix to this
matrix

Implicit

getColumn(column)

Retrieves the matrix column as a
vector

Vector containing the specified
column of this matrix

getElement(row, column)

Retrieves the matrix element as a
value

Value of this matrix element

getEuler2(convention)

Calculates the angles for the
specified Euler convention

Vector containing Euler angles of
this matrix. Refer to the Work Plane
section of the manual for a
description of Euler conventions.

getForward() Returns the forward vector. This will | Forward vector of this matrix
be 0,0,1 in an identity matrix
getN1() Returns the length of the row vectors | Returns right_vector + up_vector +
of this matrix forward_vector of matrix
getN2() Returns the square root of this matrix | Math.sqrt(nl)
vector lengths
getNegated() Calculates the negated matrix Matrix * -1.
getRight() Returns the right vector. This will be | Right vector of matrix
1,0,0 in an identity matrix
getRow(row) Retrieves the matrix row as a vector | Vector containing the specified row

of this matrix

getTiltAndTilt(first, second)

Calculates the X & Y rotations
around the fixed frame to match the
forward direction. ‘first' and 'second'
can be 0 or 1 and must be different.

Calculated forward direction of this
matrix

getTransposed()

Returns the transposed (inverse) of
the matrix

Inversed matrix

getTurnAndTilt(first, second)

Calculates the X, Y, Z rotations
around the fixed frame to match the
forward direction. ‘first' and ‘'second'
can be 0, 1, or 2 and must be
different.

Calculated forward direction

getUp()

Returns the up vector. This will be
0,1,0 in an identity matrix

Right vector of matrix

4 AUTODESK cAM Post Processor Guide 8/8/23

JavaScript Overview 3-57

Function Description Returns

isldentity() Determines if the matrix is an True if it is an identity matrix
identity matrix (1,0,0, 0,1,0, 0,0,1).

isZero() Determines if the matrix is a null True if it is a null matrix

matrix (0,0,0, 0,0,0, 0,0,0)

multiply(value)

Multiplies each component of the
matrix by the value

Result of matrix times specified
value

multiply(matrix)

Multiplies the matrix by the specified
matrix

Results of matrix times specified
matrix

multiply(vector)

Multiplies the specified vector by the
matrix

Vector multiplied by the matrix

negate() Calculates the negated matrix Implicit
normalize() Calculates the negated matrix Implicit
setColumn(column, vector) Sets the matrix column as a vector Implicit
setElement(row, column, vector) Sets the matrix element Implicit
setForward(vector) Sets the forward vector Implicit
setRight(vector) Sets the right vector Implicit
setRow(row, vector) Sets the matrix row as a vector Implicit
setUp(vector) Sets the up vector Implicit
subtract(matrix) Subtracts the specified matrix from Implicit

this matrix

toString() Formats the matrix as a string, e.g. String representation of matrix
"[[1,0,0], 0, 1,01, [0, 0, 11"
transpose() Creates the transposed/inverse of this | Implicit
matrix
Matrix Functions
Static functions do not require an associated Matrix object.
Function Description Returns

Matrix.diff(left, right)

Calculates the difference between
two matrices

Left matrix minus right matrix

Matrix.getAxisRotation(vector, angle)

Calculates a rotation matrix

Rotation matrix of 'angle' radians
around the axis 'vector'

Matrix.getXRotation(angle)

Calculates a rotation matrix around
the X-axis

Rotation matrix of 'angle' radians
around the X-axis

Matrix.getXYZRotation(abc)

Calculates the rotation matrix for
the given angles

Rotation matrix that satisfies the
specified XYZ rotations

Matrix.getYRotation(angle)

Calculates a rotation matrix around
the Y-axis

Rotation matrix of 'angle' radians
around the Y-axis

Matrix.getZRotation(angle)

Calculates a rotation matrix around
the Z-axis

Rotation matrix of 'angle' radians
around the Z-axis

Matrix.sum(left,right)

Adds the two matrices

Left matrix plus right matrix

Static Matrix Functions

var t = m.getTransposed();
var fwd = m.getForward();
var v = new Vector(0, 0, 1);

var abc = m.getEuler2(EULER_ZXZ R);

/I 'abc = ZXZ Euler angles for m

Il t = inverse/transposed matrix of m
I/ fwd = forward (Z) vector of matrix m

4 AUTODESK cAM Post Processor Guide 8/8/23

JavaScript Overview 3-58

var g = m.multiply(v);
var r = Matrix.getZRotation(toDeg(30));

/I q = transformation of v though matrix m
/[r = matrix rotated 30 degrees about Z

Sample Matrix Expressions

3.3.8 Deferred Variables

Deferred variables are used to output values to the NC file prior to them being defined. For example,
you could calculate the cutting time or travel distance for each tool while processing the intermediate
file and then reference these values in the tool list that is output at the header of the NC file. This is
accomplished by defining the deferred variables during the normal processing of the intermediate file
and using the deferred variables in an output string at a place that is processed prior to the processing of
the section of the intermediate file that defines the deferred variables.

The way that deferred variables work is by using text substitution in the output NC file. The initial text
string output to the NC file will include the name of the deferred variable enclosed by the defined
separator for defined variables, for example ##id##. After all processing is finished, the post engine will
scan the output NC file for the deferred variable text and replace it with the value stored in the deferred
variable. Itis important to know this procedure, since deferred variables cannot be accessed before they
are defined in the post processor, the same as any other variable, except for when they are output to the

NC file.

Deferred variables are stored in the DeferredVariables object, which has the following properties. The
deferred variable properties are referenced as DeferredVariables.property.

DeferredVariables Propery/Function

Description

separator

Defines the prefix and suffix that will be added to the
deferred variable name when the deferred variable is
initially output to the NC file. This should be a unique
string that is not normally seen in the NC file. The default
IS "H#".

get(id, format)

Retrieves the deferred variable named id and formats it for
output using the provided format as created by
createFormat.

set(id, value)

Assigns value to the deferred variable named id. value
must be numeric, it cannot be a text string, boolean, or an
object.

isDefined(id)

Returns true if the deferred variable named id has been
defined or false if it has not. Remember that the deferred
variable is defined during the normal processing of the
intermediate file, so if you call isDefined where the
deferred variable is being output prior to processing the
deferred variable definition, it will return false.

Deferred Variables

The following sample code will calculate the cutting time for each tool for linear, circular, and canned
cycle moves. It will output these times in the tool list located in the header of the NC file.

JavaScript Overview 3-59

4 AUTODESK cAM Post Processor Guide 8/8/23

/I collected state
var toolTime = new Array(); // define an array to store the tool cutting times.

Define the Tool Times Array

function onOpen() {
DeferredVariables.separator = "~&”"; // define a unique marker for deferred variables

var tools = getToolTable();
if (tools.getNumberOfTools() > 0) {
for (var i = 0; i < tools.getNumberOfTools(); ++i) {
var tool = tools.getTool(i);
var comment = "T" + toolFormat.format(tool.number) + " " +
"D=" + xyzFormat.format(tool.diameter) + " " +
localize("CR") + "=" + xyzFormat.format(tool.cornerRadius);
if ((tool.taperAngle > 0) && (tool.taperAngle < Math.Pl)) {
comment +="" + localize("TAPER") + "=" + taperFormat.format(tool.taperAngle) +
localize("deg™);

}
if (zRanges[tool.number]) {
comment +=" - " + localize("ZMIN") + "=" +
xyzFormat.format(zRanges[tool.number].getMinimum());
}
comment +=" - " + localize("TIME") + =" +

DeferredVariables.get(*'tool' + tool.number, xyzFormat); // Output cutting time for tool
comment +=" - " + getToolTypeName(tool.type);
writeComment(comment);

Output Tool Cutting Times in onOpen

function onSection() {

writeToolBlock("T" + toolFormat.format(tool.number), mFormat.format(6));
if (tool.comment) {
writeComment(tool.comment);
}
// initialize the cutting time if not previously defined
toolTime[tool.number] = toolTime[tool.number] ? toolTime[tool.number] : 0;

Initialize the Tool Cutting Time in onSection

function movelsCutting() {
return movement == MOVEMENT_CUTTING ||
movement == MOVEMENT_FINISH_CUTTING ||
movement == MOVEMENT_REDUCED,;

JavaScript Overview 3-60

4 AUTODESK cAM Post Processor Guide 8/8/23

B

Determine if this Move is a Cutting Move

function onCyclePoint(x, y, z) {

/ calculate the canned cycle cutting time
if ('cycleExpanded) {
toolTime[tool.number] += Math.abs(cycle.bottom - cycle.stock) / cycle.feedrate;
}
}

Calculate the Canned Cycle Cutting Time in onCyclePoint

function onLinear(_x, _y, z, feed) {
Il calculate linear cutting time
if (movelsCutting()) {
toolTime[tool.number] += Vector.diff(new Vector(_x, _y, _z), getCurrentPosition()).length /
feed;
}

Calculate Linear Moves Cutting Time in onLinear

function onCircular (clockwise, cx, cy, ¢z, X, Y, z, feed) {

/I calculate circular cutting time
/Il be sure to return directly after any calls to linearize or time will be calculated twice
if (movelsCutting()) {

toolTime[tool.number] += getCircularChordLength() / feed;

}

¥

Calculate Circular Moves Cutting Time in onCircular

function onSectionEnd() {
DeferredVariables.set(*'tool"" + tool.number, toolTime[tool.number]));
Assign the Tool Cutting Time to the Deferred Variable

3.4 Expressions

Variables can be assigned a simple value or text string or can be more complex in nature containing a
list of variables or literals and operators that perform operations on the values contained in the
expression. The following table lists the common operators supported by JavaScript. and provides
samples using the operators. The operator precedence is also listed (column P), where the operators
with a higher precedence number are performed prior to the operators of a lower precedence number.
Operators with the same precedence number will calculate in the order that they appear in the
expression.

Unary operators only require a single operand instead of two. For example, y = x++ will increment the
variable x after it is assigned to the variable y.
JavaScript Overview 3-61

4 AUTODESK cAM Post Processor Guide 8/8/23

P | Operator | Operands Description
1310 Expression Overrides the assigned precedence of operators
12 | ++ Integer Unary increment
- Integer Unary decrement
~ Integer Unary bitwise complement
! Boolean Unary logical complement (not)
11| * Number Multiplication
/ Number Division
% Number Remainder
10 | + Number, String | Addition
- Number Subtraction
9 | << Integer Bitwise shift left
>> Integer Bitwise shift right
8 | < Number, String | Less than
<= Number, String | Less than or equal to
> Number, String | Greater than
>= Number, String | Greater than or equal to
7 | == Any Equal to
I= Any Not equal to
=== Any Equal to and same variable type
I== Any Not equal to and same variable type
6 | & Integer Bitwise AND
5[Integer Bitwise XOR
4 1| Integer Bitwise OR
3| && Boolean Logical AND
2 || Boolean Logical OR
1= Any Assignment
+= Number, String | Assignment with addition
-= Number Assignment with subtraction
*= Number Assignment with multiplication
/= Number Assignment with division
Expression Operators
X y Expression Result Expression Result
3 5 Z=X+y*3 18 z=(x+y)*3 24
Z=++X z2=4,x=4 Z=Xx++ z=3,X=4
X+=y 8 X*=y 15
z=y/X 1.667 2=y %X 2.0
"Start” | "-End" |z=Xx+Yy "Start-End" X+=y "Start-End"
2 3 Z=X&Yy 2 z=Xx|y 3
1 "1 Z=X==y true X===y false
true false zZ=X true z=ly true
z=X]|y true Z=X&&Y false

Sample Expressions
JavaScript Overview 3-62

4 AUTODESK cAM Post Processor Guide 8/8/23

3.5 Conditional Statements

Conditional statements are commands or functions that will test the results of an expression and then
process statements based on the outcome of the conditional. Conditionals typically check Boolean type
expressions, but can also be used to test if a value is undefined or a string is blank.

This section describes the conditional statements and functions used when developing a post processor.
Some of the conditionals are supported by JavaScript and others are inherent in the post processor
kernel.

3.5.1 The if Statement

The if statement is the most common method for testing a conditional and executing statements based on
the outcome of the test. It can contain a single body of statements to execute when the expression is
true, a second body of statements to execute when the expression is false, or it can contain multiple
conditionals that are checked in order using the else if construct.

As with all commands that affect a body of code, if statements can be nested inside of other if bodies and
loops.

The syntax of if statements should follow the Autodesk standard of always including the {} brackets
around each body of code, specifying the opening bracket ({) on the conditional line, and the closing
bracket (}) at the start of the line following the body of code for each section as shown in the following
examples.

if (conditionall) {
/I execute code if conditionall is true

¥

if (conditionall) {
/I execute code if conditionall is true

}else {

/I execute code if conditionall is false

}

if (conditionall) {
/I execute code if conditionall is true
} else if (conditional2) {
/I execute code if conditionall is false and conditional2 is true

}else {

/I execute code if all conditionals are false
}

If Statement Syntax

JavaScript Overview 3-63

4 AUTODESK cAM Post Processor Guide 8/8/23

if (hasParameter("operation-comment™)) {
comment = getParameter("operation-comment");

¥

if (isProbeOperation()) {
var workOffset = probeOutputWorkOffset ? probeOutputWorkOffset : currentWorkOffset;
if (workOffset > 99) {
error(localize("Work offset is out of range."));
return;
} else if (workOffset > 6) {
probeWorkOffsetCode = probel00Format.format(workOffset - 6 + 100);
}else {
probeWorkOffsetCode = workOffset + "."; // G54->G59
}
}

Sample If Statements

3.5.2 The switch Statement

The switch statement is similar to an if statement in that it causes a branch in the flow of a program'’s
execution based on the outcome of a conditional. switch statements are typically used when checking
the value of a single variable, whereas if conditionals can test complex expressions.

The syntax of switch bodies will contain a single switch statement with a variable whose value
determines the code to be executed. case statements will be included in the switch body, with each one
containing the value that causes its body of code to be executed. The end of each case body of code
must have a break statement so that the next case body of code is not executed. A default statement can
be defined that contains code that will be executed if the switch variable does not match any of the case
values.

case statements should follow the Autodesk standard of always including specifying the opening bracket
({) on the switch line, and the closing bracket (}) at the start of the line at the end of the body of code for
each section. The case statements will be aligned with the switch statement and all code within each
case body will be indented.

switch (variable) {
case valuel:
/I execute if variable = valuel
break;
case value2:
/I execute if variable = value2
case value3:
/I execute if variable = value3
default:
/[execute if variable does not equal valuel, value2, or value3

JavaScript Overview 3-64

4 AUTODESK cAM Post Processor Guide 8/8/23

break:

Switch Block Syntax

switch (coolant) {

case COOLANT_FLOOQOD:
m = 8;
break;

case COOLANT_THROUGH_TOOL.:
m = 88;
break;

case COOLANT_AIR:
m = 51;
break;

default:
onUnsupportedCoolant(coolant);

¥

¥

Sample Switch Blocks

3.5.3 The Conditional Operator (?)

The ? conditional operator tests an expression and returns different values based on whether the
expression is true or false. It is a compact version of a simple if block and is used in an assignment type
statement or as part of an expression.

\ var a = conditional ? true_value : false value; \
? Conditional Operator

In the above syntax, a will be assigned true_value if the conditional is true, or false_value if it is false.

homeGcode = getProperty("useG30") ? 30 : 28;

// could be expanded into this if block
if (getProperty("useG30")) {
homeGcode = 30;

}else {
homeGcode = 28;
1

Sample ? Conditional Operator

JavaScript Overview 3-65

4 AUTODESK cAM Post Processor Guide 8/8/23

3.5.4 The typeof Operator

The typeof operator is not a conditional operator per the general terminology, but it is always used as a
part of a conditional to determine if a function or variable exists. When used in an expression it will
return a string that describes the variable type of the operand. This is the only way to test if a function
exists prior to calling the function or if a variable exists before referencing it. If you try to reference a
non-existent variable or function without testing to see if it exists first, the post processor will terminate
with an error.

The typeof operator is followed by a single operand name, i.e. "typeof variable". It can return the
following string values.

Operand Type Return Values
number "number"
string "string"
boolean "boolean”
object, array, null "object"
function "function™
undefined "undefined"

typeof Return Values

if ((typeof getHeaderVersion == "function™) && getHeaderVersion()) {
writeComment(localize("post version™) + ": "' + getHeaderVersion());
}

Sample typeof Usage

3.5.5 The conditional Function

The conditional function will test an expression and if it is true will return the specified value. If the
expression is false, then a blank string is returned. The conditional function is mainly used for
determining if a specific code should be output in a block.

\ conditional(expression, true_value)

conditional Syntax

writeBlock(
gRetractModal.format(98), gAbsincModal.format(90), gCycleModal.format(82),
getCommonCycle(x, y, z, cycle.retract),
conditional(P >0, ""P"" + milliFormat.format(P)), //optional
feedOutput.format(F)

);

conditional Usage
Since conditional is a function, any function calls contained in the arguments will be processed even if

the expression equates to false. This means that if a modal is used to format a value, the value will be

JavaScript Overview 3-66
»d AUTODESK cAM Post Processor Guide 8/8/23

formatted prior to evaluating the expression and the modal’s current value will be set using this value,
even if the value is not output.

\ writeBlock(conditional(isRapid, gMotionModal.format(0)), X, vy, 2); \
Sets the gMotionModal Modal Value to 0 Even when isRapid is false and GO0 is not Output

3.5.6 try / catch

The try/catch block is an exception handling mechanism. This allows the post processor to control the
outcome of an exception. Depending on the exception that is encountered, the JavaScript code could
continue processing or terminate with an error. The try/catch block is used to override the normal
processing of exceptions in JavaScript.

try {
/I code that may generate an exception
} catch (e) { // e is a local variable that contains the exception object or value that was thrown
/I code to perform if an exception is encountered
! try/catch Syntax
try {
programld = getAsint(programName);
} catch(e) {
error(localize("Program name must be a number."));
return;
}

try/catch Usage

3.5.7 The validate Function

The validate function tests an expression and raises an exception if the expression is false. The post
processor will typically output an error if an exception is raised, so in essence, the validate function
determines if an expression is true or false and outputs an error using the provided message if it is false.

| validate(expression, error_message) |
validate Syntax

\ validate(retracted, "Cannot cancel length compensation if the machine is not fully retracted."); \
Sample validate Code

In the above sample, an error will be generated if retracted is set to false.

JavaScript Overview 3-67

4 AUTODESK cAM Post Processor Guide 8/8/23

3.5.8 Comparing Real Values

Real values are stored as binary numbers and are not truncated as you see them in an output file, so there
are times when the numbers are not equal even if they show as the same value in the output file. For this
reason, it is recommended that you either use a tolerance or truncate them when comparing their values.
The format.getResultingValue function can be used to truncate a number to a fixed number of decimal
places.

var a = 3.141592654;
var b = 3.141593174;

// simple comparison
if @==Db) { // false

/I comparison using a tolerance
var toler = .0001;
if (Math.abs(a — b) <= toler) { // true

/l comparison using truncated values
var spatialFormat = createFormat({decimals:4});
if ((spatialFormat.getResultingValue(a) - spatialFormat.getResultingValue(b)) == 0) { // true

Comparing Real Values

3.6 Looping Statements

Loops perform repetitive actions. There are various styles of looping statements; for, for/in, while, and
do/while. You should choose the looping statement that lends itself to the style of loop you are coding.

The syntax of looping statements should follow the Autodesk standard of always including the {}
brackets around each body of code, specifying the opening bracket ({) on the looping statement, and the
closing bracket (}) at the start of the line following the body of code for the loop. Loops can be nested
within other bodies of code, like conditionals or other loops.

3.6.1 The for Loop

The for loop is the most common of the looping statements. It includes a counter and an expression on
when to end the loop, so it will loop through the body of the loop a fixed number of times, unless
interrupted by the break command. The counter variable is initialized before the loop starts and is
tested when the expression is evaluated before each iteration of the loop. The counter variable is
incremented at the end of the loop, just before the expression is evaluated again.

Multiple counters can be initialized and incremented in a for loop by separating the counters with a
comma (,).

\ for(initialize counter; test expression ; increment_counter) { \

JavaScript Overview 3-68

4 AUTODESK cAM Post Processor Guide 8/8/23

// body of loop
}

for Loop Syntax

for (var i = 0; i < getNumberOfSections(); ++i) { // loop for the number of sections in intermediate file

if (getSection(i).workOffset > 0) {
error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));

return;

}
}
for (i1=0,j=ary.length - 1;i<ary.length / 2; ++i, --j) { // reverse the order of an array
var tl = ary[i];
ary[i] = ary[il;
ary[j] = tl;
}

Sample for Loops

3.6.2 The for/in Loop

The for/in loop allows you to traverse the properties of an object. It is not commonly used in post
processors (except for the dump.cps post processor), but can be useful for debugging the property names
and values in an object.

for(variable in object) {
// body of loop

}
for/in Loop Syntax
for(var element in properties) { // write out the property table
writeln("properties.” + element + " =" + properties[element]);
}

Sample for/in Loop

3.6.3 The while Loop

The while loop evaluates an expression and will execute the body of the loop when the expression is true
and will end the loop when the expression is false. Since the expression is tested at the top of the loop,
the body of code in the loop will not be executed when the expression is initially set to false.

while (expression) {
// body of loop
}

while Loop Syntax

JavaScript Overview 3-69

4 AUTODESK cAM Post Processor Guide 8/8/23

while (¢ > 2*Math.PI) {
¢ -= 2 * Math.PI;
}

Sample while Loop

3.6.4 The do/while Loop

The do/while loop is pretty much the same as the while loop, but the expression is tested at the end of
the loop rather than at the start of the loop. This means that the loop will be executed at least once, even
if the expression is initially set to false.

do {
// body of loop
} while (expression)

do/while Loop Syntax

vari=0;
var found = false;
do{
if (mtype[i++] == "Start™) {
found = true;

}
} while (Ifound && i < mtype.length);

Sample do/while Loop

3.6.5 The break Statement

The break statement is used to interrupt a loop or switch statement prematurely. When the break
statement is encountered during a loop or switch body, then the innermost loop/switch will be ended and
control will move to the first statement outside of the loop/switch.

break is pretty much mandatory with switch statements. For loops, break can be used to get out of the
loop when an error is encountered, or when a defined pattern is found within an array.

for (i = 0; i < mtype.length; ++i) {
if (mtype[i] == "Start") {
break; // exits the loop
}

¥

Sample Usage of break Command

3.6.6 The continue Statement

The continue statement is used to bypass the remainder of the loop body and restarts the loop at the next

iteration.
JavaScript Overview 3-70

4 AUTODESK cAM Post Processor Guide 8/8/23

for (i = 0; i < mtype.length; ++i) {

if (mtypel[i] <0) {
continue; // skips this iteration of the loop and continues with the next iteration

¥
.

Sample Usage of break Command

3.7 Functions

Functions in JavaScript behave in the same manner as functions in other high-level programming
languages. In a post processor all code, except for the global settings at the top of the file, is contained
in functions, either entry functions (onOpen, onSection, etc.) or helper functions (writeBlock,
setWorkPlane, etc.). The code in a function will not be processed until that function is called from
within another routine (for the sake of clarity the calling function will be referred to as a 'routine’ in this
section). Here are the main reasons for placing code in a separate function rather than programming it in
the upper level routine that calls the function.

1. The same code is executed in different areas of the code, either from the same function or in
multiple functions. Placing the common code in its own function eliminates duplicate code from
the file, making it easier to understand and maintain.

2. To logically separate logic and make it easier to understand. Separating code into its own
function can keep the calling routine from becoming too large and harder to follow, even if the
function is only called one time.

3.7.1 The function Statement

A function consists of the function statement, a list of arguments, the body of the function (JavaScript
code), and optional return statement(s).

function name([argl [,arg2 [..., argn]]]) {
éBde

-

function Statement Syntax

The argument list is optional and contains identifiers that are passed into the function by the calling
routine. The arguments passed to the function are considered read-only as far as the calling routine is
concerned, meaning that any changes to these variables will be kept local to the called function and not
propagated to the calling routine. You use the return statement to return value(s) to the calling routine.

function writeComment(text) {
writeln(formatComment(text)); // text is accepted as an argument and passed to formatComment
JavaScript Overview 3-71

4 AUTODESK cAM Post Processor Guide 8/8/23

13 |

Sample function Definition

Arguments accepted by a function can either be named identifiers as shown in the previous example, or
you can use the arguments array to reference the function arguments. The arguments array is built-in to
JavaScript and is treated as any other Array object, meaning that it has the length property and access to
the Array attributes and functions.

transferType = parseChoice(getProperty(“transferType"),"PHASE","SPEED","STOP");

ft.J.nction parseChoice() {
for (var i = 1; i < arguments.length; ++i) {
if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {
returni - 1;

k
ks

return -1;

}

Sample Usage of arguments Array

3.7.2Calling a function

A function call is treated the same as any other expression. It can be standalone, assign a value, and be
placed anywhere within an expression. The value returned by the called function is treated as any other
variable. You simply type the name of the function with its arguments.

setWorkPlane(abc); // function does not return a value

segno = formatSequenceNumber(); // function returns a value

circumference = getRadius(circle) * 2.0 * Math.Pl; // function used in a regular expression
Sample function Calls

3.7.3 The return Statement

As you can see in the previous sections, a function can be treated the same as any other expression and
all expressions have values. The return statement is used to provide a value back to the calling routine.
You will recall that a function does not have to return a value, in this case you do not have to place a
return statement in the function, the function will automatically return when the end of the function body
is reached. You can place a return statement anywhere within the function, the function will be ended
whenever a return statement is reached.

| return [expression] |
return Statement Syntax

The return value can be any valid variable type; a number, string, object, or array. If you want to return
multiple values from a function, then you must return either an object or an array. You can also

JavaScript Overview 3-72

4 AUTODESK cAM Post Processor Guide 8/8/23

propagate the JavaScript this object which will be automatically returned to the calling routine when the
end of the function is reached or when processing a return statement without an expression. If the this
object is used, then the function will be used to create a new object and you will need to define the
function call as if you were creating any other type of object as shown in the following example.

function writeComment(text) {
writeln(formatComment(text));
} // implicit return

function parseChoice() {
for (var i = 1; i < arguments.length; ++i) {
if (String(arguments[0]).toUpperCase() == String(argumentsJi]).toUpperCase()) {
return i - 1; // return the matching choice

ks
¥

return -1; // return choice not found

¥

function FeedContext(id, description, feed) {
this.id = id;
this.description = description;
this.feed = feed,;

} // return this object {id, description, feed}

var feedContext = new FeedContext(id, "Cutting", feedCutting); // create new FeedContext object
Sample return Usage

4 Entry Functions

The post processor Entry functions are the interface between the kernel and the post processor. An
Entry function will be called for each record in the intermediate file. Which Entry function is called is
determined by the intermediate file record type. All Entry functions have the 'on’ prefix, so it is
recommended that you do not use this prefix with any functions that you add to the post processor.

Here is a list of the supported Entry functions and when they are called. The following sections in this
Chapter provide more detailed documentation for the most common of the Entry functions.

Entry Function Invoked When ...

onCircular(clockwise, cx, ¢y, ¢z, X, v, z, feed) | Circular move

onClose() End of post processing

onCommand(value) Manual NC command not handled in its own
function

onComment(string) Comment Manual NC command

onCycle() Start of a cycle

Entry Functions 4-73
v4a AUTODESK CAM Post Processor Guide 8/8/23

Entry Function Invoked When ...

onCycleEnd() End of a cycle

onCyclePoint(x, vy, z) Each cycle point

onDwell(value) Dwell Manual NC command

onLinear(x, y, z, feed) 3-axis cutting move

onLinear5D(X, Y, z, a, b, ¢, feed) 5-axis cutting move

onMachine() Machine configuration changes
onManualNC() Manual NC commands
onMovement(value) Movement type changes

onOpen() Post processor initialization
onOrientateSpindle(value) Spindle orientation is requested
onParameter(string, value) Each parameter setting
onPassThrough(string) Pass through Manual NC command
onPower(boolean) Power mode for water/plasma/laser changes
onRadiusCompensation() Radius compensation mode changes
onRapid(x, vy, z) 3-axis Rapid move

onRapid5D(x, Y, z, a, b, ¢) 5-axis Rapid move

onRewindMachine(a, b, ¢) Rotary axes limits are exceeded

onSection() Start of an operation

onSectionEnd() End of an operation
onSectionEndSpecialCycle() End of a special cycle operation
onSectionSpecialCycle() Start of a special cycle operation (Stock Transfer)
onSpindleSpeed(value) Spindle speed changes

onTerminate() Post processing has completed, output files are closed
onToolCompensation(value) Tool compensation mode changes

Entry Functions

4.1 Global Section

The global section is not an Entry function, but rather is called when the post processor is first
initialized. It defines settings used by the post processor kernel, the property table displayed with the
post processor dialog inside of HSM, definitions for formatting output codes, and global variables used
by the post processor.

While the global section is typically located at the top of the post processor, any variables defined
outside of a function are in the global section and accessible by all functions, even the functions defined
before the variable. You may notice global variables being defined in the middle of the post processor

Entry Functions 4-74
v4a AUTODESK CAM Post Processor Guide 8/8/23

code just before a function. This allows for a group of functions to be easily cut-and-pasted from one
post to another post, including the required global variables.

4.1.1 Kernel Settings

Some of the variables defined in the global section are actually defined in and used by the post engine.
These variables are usually at the very top of the file and are easily discerned, since they are not
preceded by var. The following table provides a description of the kernel settings that you will find in

Mmost post processors.

Setting

Description

allowedCircularPlanes

Defines the allowed circular planes. This setting is described in the
onCircular section.

allowHelicalMoves

Specifies whether helical moves are allowed. This setting is described in
the onCircular section.

allowSpiralMoves

Specifies whether spiral moves are allowed. This setting is described in
the onCircular section.

capabilities

Defines the capabilities of the post processor. The capabilities can be
CAPABILITY_MILLING, CAPABILITY_TURNING,
CAPABILITY_JET, CAPABILITY_SETUP_SHEET, and
CAPABILITY_INTERMEDIATE. Multiple capabilities can be enabled
by using the logical OR operator.

capabilities = CAPABILITY_MILLING | CAPABILITY_TURNING;

certificationLevel

Certification level of the post configuration used to determine if the post
processor is certified to run against the post engine. This value rarely
changes.

description Short description of post processor. This will be displayed along with the
post processor name in the Post Process dialog in HSM when selecting a
post processor to run.

extension The output NC file extension.

highFeedMapping

Specifies the high feed mapping mode for rapid moves. Valid modes are
HIGH_FEED_NO_MAPPING, HIGH_FEED_MAP_MULTI,
HIGH_FEED_MAP_XY_Z, and HIGH_FEED_MAP_ANY. This setting
can be changed dynamically in the Property table when running the post
processor.

highFeedrate

Specifies the feedrate to use when mapping rapid moves to linear moves.

legal

Legal notice of company that authored the post processor

mapToWCS

Specifies whether the work plane is mapped to the model origin and work
plane. When disabled the post is responsible for handling mapping from
the model origin to the setup origin. This variable must be defined using
the following syntax and can only be defined in the global section. Any
deviation from this format, including adding extra spaces, will cause this
command to be ignored.

mapToWCS = true;

Entry Functions 4-75

4 AUTODESK cAM Post Processor Guide 8/8/23

Setting

Description

mapToWCS = false;

mapWorkOrigin

Specifies whether the coordinates are mapped to the work plane origin.
When disabled the post is responsible for handling the work plane origin.
This variable must be defined using the following syntax and can only be
defined in the global section. Any deviation from this format, including
adding extra spaces, will cause this command to be ignored.

mapWorkOrigin = true;
mapWorkOrigin = false;

maximumCircularRadius

Specifies the maximum radius of circular moves that can be output as
circular interpolation and can be changed dynamically in the Property
table when running the post processor. This setting is described in the
onCircular section.

maximumCircularSweep

Specifies the maximum circular sweep of circular moves that can be
output as circular interpolation. This setting is described in the onCircular
section.

minimumChordLength

Specifies the minimum delta movement allowed for circular interpolation
and can be changed dynamically in the Property table when running the
post processor. This setting is described in the onCircular section.

minimumCircularRadius

Specifies the minimum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property
table when running the post processor. This setting is described in the
onCircular section.

minimumCircularSweep

Specifies the minimum circular sweep of circular moves that can be output
as circular interpolation. This setting is described in the onCircular
section.

minimumRevision

The minimum revision of the post kernel that is supported by the post
processor. This value will remain the same unless the post processor takes
advantage of functionality added to a later version of the post engine that
is not available in earlier versions.

programNamelsinteger

Specifies whether the program name must be an integer (true) or can be a
text string (false).

tolerance Specifies the tolerance used to linearize circular moves that are expanded
into a series of linear moves. This setting is described in the onCircular
section.

unit Contains the output units of the post processor. This is usually the same as
the input units, either MM or IN, but can be changed in the onOpen
function of the post processor by setting it to the desired units.

vendor Name of the machine tool manufacturer.

vendorUrl URL of the machine tool manufacturer's web site.

Post Kernel Settings

description = "RS-274D";
vendor = "Autodesk";

Entry Functions 4-76

4 AUTODESK cAM Post Processor Guide 8/8/23

vendorUrl = "http://www.autodesk.com™;

legal = "Copyright (C) 2012-2017 by Autodesk, Inc.";
certificationLevel = 2;

minimumRevision = 24000;

longDescription = "Generic post for the RS-274D format. Most CNCs will use a format very similar
to RS-274D. When making a post for a new CNC control this post will often serve as the basis."”;

extension = "nc";
setCodePage("ascii");

capabilities = CAPABILITY_MILLING;
tolerance = spatial(0.002, MM);

minimumChordLength = spatial(0.01, MM);
minimumCircularRadius = spatial(0.01, MM);
maximumCircularRadius = spatial(1000, MM);
minimumCircularSweep = toRad(0.01);
maximumCircularSweep = toRad(180);
allowHelicalMoves = true;

allowedCircularPlanes = undefined; // allow any circular motion
Sample Post Kernel Settings Code

4.1.2 Property Table

Library post processors are designed to run the machine without any modifications, but may not create

the output exactly as you would like to see it. The Property Table contains settings that can be changed
at runtime so that the library post can remain generic in nature, but still be easily customized by various
users. The settings in the Property Table will typically be used to control small variations in the output
created by the post processor, with major changes handled by settings in the Fixed Settings section.

The properties can be displayed in multiple areas of HSM; when you use the Post Process dialog to run
the post processor, in an NC Program, under the Post Processing tab in the Machine Configuration, and
in the Post Process tab of an operation. When you Post Process from HSM or edit an NC Program you
may be presented with a dialog that allows you to select the post processor to execute, the output file
path, and other settings. The Property Table will also be displayed in the dialog allowing you to
override settings within the post processor each time it is run.

Entry Functions 4-77
v4a AUTODESK CAM Post Processor Guide 8/8/23

F NC Program: NCProgram1

Settings ~ Operations

Machine and Post

Use machine configuration
Post

Use cascading post.

Program
Name/number
Comment

Output Folder

Post to Fusion Team
NC Extension

unit

Open NC flle in editor

CR Onsrud 5-axis Router with Fani = || @% ..

1001
b\AppDataiLocalFusion 360 CAMinc | [..

.nc

Document unit -

e

7]

Post properties

~ Configuration
Has 5-axis
Max tool number 32
Vacuum table
~ Preferences
Allow 3D arcs
Force IIK
Hood control
Hood postion in inches
Optional stop
Safe retract distance
Use G5
Parametric feed
Use pitch for tapping
Radius arcs
Use rigid tapping
Smoathing control

~ Saw Aggregate

No vacuum

0

Yes

Level 7

Cancel

Property Table in NC Program

F Machine Configuration

X

Descrpon bpoamg
Dimensions
Capabiltics wekofes
Workpiece Number of Work Offsets
K Linear
¥ Linear Post Location Post Processor
Z Linear |custom | | omsrud fanuc 31.p5 v
Table Post Output Folder
ARotary
CRotary c:f [
Spindle
Configuration
Machining Time [zt
Coolant Max tool number 32 |
Ee=tiosss) Vacuum table | No vacuum]
Multi-Axis
v preferences
/ Safe retract distance [0]
B I (= L]

Property Table in Machine Configuration

»4 AUTODESK cAM Post Processor Guide 8/8/23

@ FACE: 2D-FACE

Cala A=)

¥ General

Smoothing control

Level 7 r

Ok Cancel

Property Table in Operation

Entry Functions 4-78

El Post Process

Configuration Folder

| C:\Pokts

Post Configuration

Output folder

|E'2f'if:"_"2f‘: | all

~ | | All vendors

CR. Onsrud 5-axis Router with Fanuc 31i control / cr onsrud fanuc 31 ~ Open config

| C:\Desktop

Open folder

Program Settings

Program name or number
[1001 |

Program comment
| Router Test Part ‘

Unit

Document unit ~

Reorder to minimize tool changes
Open NC file in editor /

Search For posts in our Autodesk HSM post librar

Setup

MC extension

nc

Property

Has 5-axis

Max tool number

Vacuum table

Separate words with space
Sequence number increment
Start sequence number
Show notes

Use sequence numbers
Write maching

Write tool list

Value

Yes
32

Mo wacuum

Yes
5
10
No
Yes
Yes
Yes

Cancel

Property Table in Inventor/HSMWorks Post Process Dialog

The Property Table is defined in the post processor so you have full control over the information
displayed in it, with the exception of the Built-in properties, which are displayed with every post
processor and define the post kernel variables described previously. The properties object defined in the
post processor defines the property names as they are used in the post processor, the titles displayed in
the Property Table, the accepted input types, the default values assigned to each property, and settings
controlling the display attributes of the property in the property table.

/I user-defined properties
properties = {
writeMachine: {
title: "Write machine”,

group: "general”,
type: "boolean”,
value: true,
scope: "post”

useSmoothing: {
title: "SGI / High Precision Mode",

type: "enum",

group: "preferences”,

values:[
{title:"Off", id:"-1"},
{title:"Automatic”, id:"9999"},
{title:"Standard", id:"0"},
{title:"High Speed", id:"1"},

description: "High-Speed High-Precision Parameter.",

description: "Output the machine settings in the header of the code.",

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-79

{title:"High Accuracy", id:"2"},
{title:"Special”, id:"3"}

Il
value: "-1",
scope: ["post”, "operation"]
} o
}

Property Table Definition

The following table describes the supported members in the properties object. It is important that the
format of the properties object follows the above example, where the name of the variable is first,
followed by a colon (), and the members enclosed in braces ({}). The values property is an array and
its members must be enclosed in brackets ([]).

Property Description

title Description of the property displayed in the User Interface within the
Property column.

description A description of the property displayed as a tool tip when the mouse is
positioned over this property.

group The group name that this property belongs to. All properties with the same
group name will be displayed together in the User Interface. The groups are
defined by the groupDefinitions object discussed further in this chapter.

type Defines the input type. The input types are described in the following table.

value The default value for this property.

range The minimum and maximum allowable values for a numeric property
specified as an array ([-1000, 1000]).

values Contains a list (array) of choices for the enum, integer, or boolean input

types. Itis not valid with any other input type. For boolean values, it should
be an array of 2 strings, with the first entry representing true and the second
representing false.

presentation

Defines how a boolean will be displayed in the property table. Valid settings
are defined as a text string and can be “yesno” (Yes/No), “truefalse”
(True/False), “onoff” (On/Off), and “10” (1/0).

scope

Tells the post which dialogs will display this property. Supported settings are
post, machine, and operation. The setting must be specified as a text string.
scope can be a single value or an array of the supported dialogs. Examples:
scope: “post”, scope: [“post”, “machine”]. There are caveats when
enabling a property in more than one dialog type as described in the
Property Scopes section of this chapter.

enabled

Specifies the operation type where this property will be displayed in the HSM
operation dialog. This property only applies to operation properties and has
no effect on post and machine properties. The setting must be specified as a
text string or an array of text strings. Valid settings are “milling ”, “turning ”,
“drilling ", “probing ”, “inspection ”, and “additive .

»4 AUTODESK

Entry Functions 4-80
CAM Post Processor Guide 8/8/23

Property Description
visible Defines whether a property is visible in the NC Program and Operation
dialogs. This setting has no effect on the Machine Configuration or legacy

Post Process dialogs. It can be set to true or false.
Properties Settings

Input Type Description

"integer" Integer value

"number" Real value

"spatial” Real value

"angle" Angular value in degrees

"boolean™ true or false

"string” Text string

"enum" The enum input type defines this variable as having fixed choices associated

with it. These choices are defined individually in the values property array.
An enum input type should be defined using string values.
Property Table Input Types

Values Property Description
title The text of the choice item displayed in the User Interface for this variable.
id The value that will be returned in the variable when the post processor is

called. All references to this property, e.g. getProperty(*'rotaryTableAxis"),
in the post processor should expect only one of these id values as its value.
The id must be a text string when associated with an enum input type or an
integer value when associated with an integer.

Enum Choices Properties

4.1.3 Property Scopes

When multiple dialog types are specified for the scope property there is a hierarchy that defines which
dialog has final say in the property value passed to the post processor. This hierarchy is as follows.

1. Operation property
2. Post property
3. Machine property

Therefore, if a property is defined as a post and an operation property, then the setting made in the Post
Process, and NC Program dialogs will be ignored by the post processor, only the setting made in each
separate operation will be used by the post processor. The only place you would be able to query the
Post Process property setting is in onOpen when using the getProperty function. For these reasons it is
highly recommended that operation properties are not defined in the post or machine scopes.

When specifying a property as a machine and post property, the setting made to the property in the
Machine Configuration dialog will become the default setting for the post property displayed in the

Entry Functions 4-81
v4a AUTODESK CAM Post Processor Guide 8/8/23

corresponding dialogs. If the property setting is changed in the post dialog, then this value will override
the machine property setting.

4.1.4 Operation Properties

Operation properties are shown in the Post Process tab of the Operation dialog and are defined by
including operation in the scope of the property.

gotChipConveyor: {
title : "Use chip transport”,
description: "Enable to turn on the chip transport for this operation.”,
group : "configuration”,
type :"boolean",
value :false,
scope : "operation™,
enabled : "milling™
h

Defining an Operation Property

@ FACE : 2D-FACE FRONT
Cata e s | [
¥ General

Use chip transport D

i] OK Cancel

Property Displayed in an Operation Dialog

To display operation properties in Fusion 360 or Inventor CAM it is required that a Machine
Configuration be assigned to the Manufacturing Setup. The reason is that the Machine Configuration
has a post processor assigned to it and the operation properties are obtained from this known post
processor.

@ SETUP:SETUP FOR METRIC TOOLS

7 + &

¥ Machine

Machine Select... Edit... x

Autodesk This machine has Y AC axi...

Operation Properties Require a Machine Configuration

Entry Functions 4-82
v4a AUTODESK CAM Post Processor Guide 8/8/23

E Machine Configuration

Description
Dimensions
Capabilities
Workpiece
Kinematics
K Linear
¥ Linear
Z Linear
Table

~

Spindle
Machining Time
Coolant
Post Processing
Multi-Axis

Post Processing

Work Offsets
Number of Work Offsets

Post Processor

/

|RS -274D Sample Multi-axis Post Processor [rs274 multi-axis

Post Output Folder

thfOneDrive - Aub i

Prepaosition rotaries
Use G68.2

e - Autodesk/Documents/Fusion 360/NC Programs

Assigning a Post Processor to a Machine Configuration

The enabled parameter in the property definition specifies the operation type where this property will be
displayed in the HSM Operation dialog. This property only applies to operation properties and has no
effect on post and machine properties. The setting must be specified as a text string or an array of text

strings.

enabled Setting

Operation type property is displayed with

"milling" All milling and drilling operations.
"turning" All turning operations.

"drilling" All drilling operations.

"probing" All probing operations.
"inspection™ All inspection operations.
"additive" All additive operations.

"operation-strategy"

Only operations of the specified operation strategy, for example "face",
"contour2D", "adaptive2D", "turningRoughing", etc. You can find the
strategy for a certain operation type by running the Dumper post processor
(dump.cps) and searching for operation-strategy. The operation strategies can
be placed in an array to allow multiple strategies to be specified, for example:
enabled : ["contour2d", "chamfer2d"].

4.1.5 Property Groups

The display order of the properties is controlled by the group setting in the property definition and in the
groupDefinitions object, which defines which group the property belongs to and the order that the
groups are displayed in the Property table in each dialog.

Property Table Input Types

The post processor has a number of built-in property groups as defined in the following table. You can
reference these groups in the property definition without creating the group in the groupDefinition

object.
Group Title Description Order | Collapsed
configuration Configuration Configuration options 10 true

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-83

preferences Preferences User preferences 20 false

homePositions Safe retracts and | Settings related to safe retracts and 30 true
home positioning | home positioning

multiAxis Multi-axis Multi-axis settings 40 true

formats Formats NC code format settings 50 true

probing Probing and Probing and inspection settings 60 true
Inspection

Built-in Group Definition

If a property does not fit into a predefined group, you can add to the built-in groups by defining these
groups within the groupDefinitions object. In the following example, the subSpindle group will be
displayed after the built-in configuration group and the looping group will be displayed after the built-in
preferences group. This is determined by the value assigned to the order property.

/l define the custom property groups
groupDefinitions = {

subSpindle: {title: "Sub spindle", description: "Sub spindle options", collapsed:true, order:15},
looping: {title:"Looping", description: "Looping control”, collapsed:true, order:25}

&

Property Group Definition

The following table describes the supported properties in the groupDefinitions object. It is important
that the format of the groupDefnitions object follows the above example, where the name of the group is
first, followed by a colon (:), and the properties enclosed in braces ({}).

Each group referenced in the properties definition and not one of the built-in property groups should be
defined in groupDefinitions.

Property Description

title Title of the group displayed in the Post properties table. The title is not
displayed in the legacy Post Process dialog.

description A description of the group displayed as a tool tip when the mouse is
positioned over this group name.

order A number defining the displayed placement of the group in the Post
properties table. For example, a value of less than 10 will be displayed first,
25 will display between the preferences and homePositions groups, and a
value of 70 will be displayed after the probing group.

collapsed Defines whether the group will be collapsed or expanded by default in the
Post properties table. true collapses the group and false expands the group.

Group Definition Settings

Entry Functions 4-84
v4a AUTODESK CAM Post Processor Guide 8/8/23

Post properties

+ Configuration
b Preferences
* Looping

Safe retracts and home positioning

Sub spindle position for part catcher | 0

Use G28 Z home
Z home position 0
+ Formats
b Built-in

Property Groups

4.1.6 Accessing Properties

getProperty(property [,default-value])
section.getProperty(property [,default-value])

Arguments Description

property The property you want to retrieve the value of. It can be specified as a text
string (“useSmoothing”) or as a direct reference to the property
(properties.useSmoothing). It is recommended to use the text string syntax.

The section.getProperty function can be used to obtain the value of a property
for a specific section. If the specified property is not an operation property,
then the post property value will be returned. The section.getProperty function
only needs to be used if you need to know the value of an operation property
outside of when the operation is being processed, for example in onOpen.
default-value The value to return from getProperty if the specified property does not exist.
If a default value is not specified and the property does not exist, then
undefined will be returned.

The getProperty function is used to obtain the value of a post processor property.

showSequenceNumbers = getProperty(‘“showSequenceNumbers”);
if (getProperty(properties.showSequenceNumbers) {

var smooth = section.getProperty(“useSmoothing”, false);
Sample getProperty Calls

\ function setProperty(property, value) \

Entry Functions 4-85
v4a AUTODESK CAM Post Processor Guide 8/8/23

Arguments Description

property The property you want to set the value of. It can be specified as a text string
(“useSmoothing™) or as a direct reference to the property
(properties.useSmoothing). It is recommended to use the text string syntax.
value The value to set the property to.

The setProperty function is used to set the value of a post processor property.

setProperty(*'showSequenceNumbers", true);
setProperty(properties.showSequenceNumbers, true);
Sample setProperty Calls

4.1.7 Format Definitions

The format definitions area of the global section is used to define the formatting of codes output to the
NC file. It consists of the format definitions (createFormat) as well as definitions that determine when
the codes will be output or suppressed (createQutputVariable).

The createFormat command defines how codes are formatted before being output to the NC file. It can
be used to create a complete format for an output code, including the letter prefix, or to create a primary
format that is referenced with the output definitions. It has the following syntax.

‘ createFormat({specifier:value, specifier:value, ...}); ‘
createFormat Syntax

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (:)
and then by a value. Multiple specifiers are separated by commas.

Specifier Value

base The base increment of the output value. For example, a value of .002 will
only output values on a .002 increment (.002, .004, .010, etc.). The default
is 0.

decimals Defines the number digits to the right of the decimal point to output. The
default is 6.

forceSign When set to true will force the output of a plus (+) sign on positive
numbers. The default is false.

inherit Inherits all properties from an existing FormatNumber.

minDigitsLeft The minimum number of digits to the left of the decimal point to output.
The default is 1.

minDigitsRight The maximum number of digits to the right of the decimal point to output.
The default is 0.

maximum The unsigned maximum value that can be output. Formatted positive values
will not be greater than this value and formatted negative values will not be
less than the negative value. For example, defining a maximum value of

Entry Functions 4-86
v4a AUTODESK CAM Post Processor Guide 8/8/23

Specifier Value

9999.99 will limit the output values to -9999.99 through 9999.99. The
default is unlimited.

minimum The unsigned minimum value that can be output. Formatted positive values
will not be less than this value and formatted negative values will not be
greater than the negative value. For example, defining a minimum value of
0.001 will limit the output values to less than -0.001 or greater than 0.001.
The default is 0.

offset Defines a number to add to the value prior to formatting it for output. The
default is 0.
prefix Defines the prefix of the output value as a text string. The prefix should

only be defined if this is a standalone format and is not used for multiple
output definitions. The defaultis " .

scale Defines a scale factor to multiply the value by prior to formatting it for
output. scale can be a number or a number designator, such as DEG. The
default is 1.

separator Defines the character to use as the decimal point. The defaultis'.".

suffix Defines the suffix of the output value as a text string. The suffix should

only be defined if this is a standalone format and is not used for multiple

output definitions. The default is "".

type Defines the format of the number. Can be one of the following.

e FORMAT_INTEGER — whole numbers do not contain a decimal
point, fractional numbers contain a decimal point.

e FORMAT_REAL - all numbers contain a decimal point.

e FORMAT_LZS — Leading Zero Suppression. The decimal point is
omitted and leading zeros are removed, including leading zeros in
the fractional portion of the number if the value is less than 1.

e FORMAT_TZS — Trailing Zero Suppression. The decimal point is
omitted and trailing zeros are removed, including trailing zeros in
the whole number if the fractional part is set to O.

The default is FORMAT _INTEGER.

createFormat Specifiers

The createFormat function creates a FormatNumber object. Once a FormatNumber is created, it can be
used to create a formatted text string of a value that matches the properties in the defined format. The
following table describes the functions defined in the FormatNumber object.

Function Description

areDifferent(a, b) Returns true if the input values are different after being formatted.

format(value) Returns the formatted text string representation of the number.

getBase() Returns the base increment of the format.

getDecimalSymbol() Returns the character used as the decimal point symbol.

getError(value) Returns the inverse of the remaining portion of the value that is not
formatted for the number. For example, if the formatted value of

Entry Functions 4-87
v4a AUTODESK CAM Post Processor Guide 8/8/23

Function Description
4.5005 is "4.500", then the value returned from getError will be -
0.0005.

getForceSign() Returns true if the + sign is output in the formatted number.

getMaximum()

Returns the maximum value that can be output.

getMinDigitsLeft()

Returns the minimum number of digits to output to the left of the
decimal point.

getMinDigitsRight()

Returns the minimum number of digits to output to the right of the
decimal point.

getMinimum()

Returns the minimum value that can be output.

getMinimumValue()

Returns the minimum value that can be formatted using this format,
for example, 1 for decimals:0, .1 for decimals:1, etc.

getNumberOfDecimals()

Returns the maximum number of digits to output to the right of the
decimal point.

getOffset()

Returns the number to add to the formatted number.

getPrefix()

Returns the prefix of the formatted number.

getResultingValue(value)

Returns the real value that the formatted output text string
represents.

getScale() Returns the scale to apply to the formatted number.
getSuffix() Returns the suffix of the formatted number.

getType() Returns the formatting type.

isSignificant(value) Returns true if the value will be non-zero when formatted.
setBase(base) Defines the base increment of the format.

setDecimalSymbol(‘'symbol')

Defines the character used as the decimal point symbol.

setForceSign(forceSign)

Determines if the + sign is output in the formatted number.

setMaximum(max)

Defines the maximum value that can be output.

setMinDigitsLeft(min)

Defines the minimum number of digits to output to the left of the
decimal point.

setMinDigitsRight(min)

Defines the minimum number of digits to output to the right of the
decimal point.

setMinimum(min)

Defines the minimum value that can be output.

setNumberOfDecimals(number)

Defines the maximum number of digits to output to the right of the
decimal point.

setOffset(offset) Defines the number to add to the formatted number.
setPrefix(prefix) Defines the prefix of the formatted number.

setScale(scale) Defines the scale to apply to the formatted number.

setSuffix() Defines the suffix of the formatted number.

setType() Sets the formatting type, FORMAT _INTEGER, FORMAT_REAL,

FORMAT_LZS, or FORMAT_TZS.

FormatNumber Functions

The following table shows how a value of 0 could be formatted depending on the format type and
settings for the minimum digits to the left and right of the decimal point.

Entry Functions 4-88

4 AUTODESK cAM Post Processor Guide 8/8/23

FORMAT_INTEGER | FORMAT_INTEGER | FORMAT_REAL | FORMAT_REAL

minDigitsLeft:0 minDigitsLeft:1 minDigitsLeft:1 minDigitsLeft:0

minDigitsRight:0 minDigitsRight:0 minDigitsRight:0 | minDigitsRight:1
X X0 X0. X.0

Formatting the Number Zero

var xFormat = createFormat({type:FORMAT_REAL, decimals:3, minDigitsRight:3, forceSign:true});
xFormat.format(4.5); // returns "+4.500"

xFormat.areDifferent(9.123, 9.1234); // returns false, both numbers are 9.123
xFormat.getMinimumValue(); // returns 0.001

xFormat.isSignificant(.0006); // returns true (rounded to .001)

xFormat.isSignificant(.0004); // returns false

var yFormat = createFormat({prefix:"Y", decimals:3, forceSign:true});
yFormat.format(4.5); // returns "Y+4.5"

yFormat.format(6); // returns Y+6
yFormat.getResultingValue(3.1234); // returns 3.123

var toolFormat = createFormat({prefix:"T", decimals:0, minDigitsLeft:2});
toolFormat.format(7); // returns "TO7"

var aFormat = createFormat({type:FORMAT _REAL, decimals:3, forceSign:true, scale:DEG});
aFormat.format(Math.Pl); // returns "+180."

var peckFormat = createFormat({type:FORMAT _LZS, decimals:4, minDigitsLeft:0});
peckFormat.format(1.23); // returns Q12300

peckFormat.format(0.001); // returns Q10
Example createFormat Commands

4.1.8 Deprecated Format Specifiers

In support of existing post processors, the following legacy format definition is still supported. The
syntax of the createFormat statement remains the same, but the specifiers are different from those
described in the previous section as shown in the following table.

Specifier Value

decimals Defines the number digits to the right of the decimal point to output. The
default is 6.

forceDecimal When set to true the decimal point will always be included with the
formatted number. false will remove the decimal point for integer values.

forceSign When set to true will force the output of a plus (+) sign on positive
numbers. The default is false.

inherit Inherits all properties from an existing FormatNumber.

Entry Functions 4-89
v4a AUTODESK CAM Post Processor Guide 8/8/23

mk:@MSITStore:C:/Users/Public/Documents/Autodesk/Inventor%20HSM/Posts/post.chm::/classMath.html

Specifier Value

offset Defines a number to add to the value prior to formatting it for output. The
default is 0.
prefix Defines the prefix of the output value as a text string. The prefix should

only be defined if this is a standalone format and is not used for multiple
output definitions. The defaultis "".

scale Defines a scale factor to multiply the value by prior to formatting it for
output. scale can be a number or a number designator, such as DEG. The
default is 1.

separator Defines the character to use as the decimal point. The defaultis.".

suffix Defines the suffix of the output value as a text string. The suffix should

only be defined if this is a standalone format and is not used for multiple
output definitions. The default is "".

trim When set to true the trailing zeros will be trimmed from the right of the
decimal point. The default is true.

trimLeadZero When set to true will trim the lead zero from a floating-point number if the
number is fractional, e.g. .123 instead of 0.123. The default is false.

width Specifies the minimum width of the output string. If the formatted value's

width is less than the width value, then the start of the number will either be
filled with spaces or zeros depending on the value of zeropad. If the format
is used to output a code to the NC file be sure to set zeropad to true,
otherwise the prefix and value could be separated by spaces. The width of
the output string includes the decimal point when it is included in the
number, but not the sign of the number. The default is 0.

zeropad When set to true will fill the beginning of the output string with zeros to
match the specified width. If width is not specified or the output string is

longer than width, then no zeros will be added. The default is false.
Deprecated createFormat Specifiers

4.1.9 Output Variable Definitions

The format object is used to format values but has no connection to the output of the variable, except for
formatting a text string that could be output. It does not know what the last output variable is, which is
important when you do not want to output a code if the value has not changed from its previous output
value.

The createOutputVariable function creates OutputVariable objects that are used to control the output of
a code. The codes can be output only when they are changed, as an absolute value, as an incremental
value, or as a directional value where the sign of the number determines a movement direction.

You can use the FormatNumber object, created from the createFormat function, for codes/registers that
should be output whenever they are encountered in the post, just be sure to add the prefix to the
definition.

‘ createOutputVariable({specifier:value, specifier:value, ...}, format); ‘

Entry Functions 4-90
v4a AUTODESK CAM Post Processor Guide 8/8/23

Output Variable Syntax

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (%)
and then by a value. Multiple specifiers are separated by commas. A FormatNumber object is provided
as the second parameter. Supported specifiers are listed in the following table.

Specifier

Value

control

Determines when a formatted variable will be output. CONTROL_CHANGED
will format the number when it has changed from the previously formatted
value, CONTROL_FORCE will format the number each time, and
CONTROL_NONZERO will format the number only when it is not equal to
zero. If the number is not formatted, then a blank string will be returned.

current

Defines the initial value to store in the output variable.

cyclicLimit

Specifies the absolute range limit for the formatted value, for example it could
be 360 for a rotary axis.

cyclicSign

Specifies the sign for a cyclic value and can be -1 (formatted numbers will
always be negative), 0 (formatted numbers can be both positive and negative),
or 1 (formatted numbers will always be positive).

onchange

Defines the method to be invoked when the formatting of the value results in
output.

prefix

Text string that prepends to the prefix defined in the format.

suffix

Text string that appends to the suffix defined in the format.

tolerance

Defines a tolerance used to determine when the number should be formatted. A
value must differ from the previous value by greater than this tolerance to be
output.

type

Defines the output type of the variable. Can be one of the following.

e TYPE_ABSOLUTE — The number will maintain its value when
formatted.

e TYPE_INCREMENTAL — The formatted number will be an
incremental value from the previously formatted value.

e TYPE_DIRECTIONAL — The formatted number will be negative if the
value is less than the previously formatted value or will be positive if
the value is greater than the previously formatted value. This type is
usually used in conjunction with the cyclicLimit and cyclicSign
specifiers for rotary axes that are output on a rotary scale.

The defaultis TYPE_ABSOLUTE..

Output Variable Specifiers

The onchange property defines a function that is called whenever the formatting of the variable results
in an output text string, such as when the value changes or is forced out. The following example will
force out the gMotionModal code whenever the plane code is changed.

| var gPlaneModal = createOutputVariable(fonchange:function () {gMotionModal.reset();}}, gFormat); |

onchange Usage
Entry Functions 4-91

4 AUTODESK cAM Post Processor Guide 8/8/23

Once an output variable is created, it can be used to create a formatted text string for output. The
following table describes the functions assigned to the output variable objects. The functions are
properties of the defined OutputVariable object.

Function Description

disable() Disables this variable from being output. Will cause the return value
from the format function to always be a blank string ("").

enable() Enables this variable for output. This is the default condition when the

variable is created.

format(value)

Returns the formatted text string representation of the number. A blank
string will be returned when the value is the same as the stored value
when control is set to CONTROL_CHANGED, or generates a value of
0 when control is set to CONTROL_NONZERO.

getControl()

Returns the control setting of the output variable.

getCurrent()

Returns the value currently stored in this variable.

getCyclicLimit()

Returns the absolute cyclic limit (rollover) of the output variable.

getCyclicSign()

Returns the cyclic sign setting of the output variable.

getFormat() Returns the FormatNumber associated with this output variable.

getPrefix() Returns the prefix of the output variable.

getResultingValue(value) | Returns the real value that the formatted output text string represents.

getSuffix() Returns the suffix of the output variable.

getTolerance() Returns the output tolerance of the output variable.

getType() Returns the output type of the variable.

get---() All get functions supported by the FormatNumber object can be called
from an OutputVariable object. These calls return the values stored in
the FormatNumber, for example getDecimals(), getScale(), etc. The
only get functions not supported are those with the same names as
OutputVariable functions, such as getPrefix().

isEnabled() Returns true if this variable is enabled for output.

setControl(control)

Sets the control type, CONTROL_CHANGED, CONTROL_FORCE, or
CONTROL_NONZERO.

setCurrent(value)

Sets the current value.

setCyclicLimit(value)

Defines the rollover value (cyclic limit).

setCyclicSign(value)

Defines the cyclic sign, -1 (formatted numbers will always be negative),
0 (formatted numbers can be both positive and negative), or 1
(formatted numbers will always be positive).

setFormat(format)

Changes the FormatNumber object associated with this output variable.

setPrefix(prefix-text)

Overrides the prefix of the variable.

setSuffix(suffix-text)

Overrides the suffix of the variable.

setTolerance(value)

Defines the output tolerance of the variable.

setType(type) Sets the formatting type, TYPE_ABSOLUTE,
TYPE _INCREMENTAL, or CONTROL DIRECTIONAL.
set---() All set functions supported by the FormatNumber object can be called

from an OutputVariable object. These calls override the properties

Entry Functions 4-92

4 AUTODESK cAM Post Processor Guide 8/8/23

Function

Description

stored in the FormatNumber associated with this OutputVariable, for
example setDecimals(3), setScale(2), etc. The only set functions not
supported are those with the same names as OutputVariable functions,
such as setPrefix().

When a FormatNumber is assigned to an OutputVariable then a copy of
the FormatNumber is placed in the OutputVariable, so setting a
FormatNumber property from an OutputVariable does not modify the
original FormatNumber used when creating the OutputVariable.

reset()

Forces the output of the formatted text string on the next call to format,

overriding the rules for not outputting a value.

OutputVariable Functions

var xyzFormat = createFormat({decimals:3, type:FORMAT_REAL});

var xOutput = createVariable({prefix:"X"}, xyzFormat);

xOutput.format(4.5); // returns "X4.5"

xOutput.format(4.5); // returns ™" (4.5 is currently stored in the xOutput variable)
xOutput.reset(); /I force xOuput on next formatting

xOutput.format(4.5); // returns "X4.5"

xQOutput.disable(); // disable xOutput formatting

xOutput.format(1.2); // returns " since it is disabled

var gFormat = createFormat({prefix:"G", decimals:0, minDigitsLeft:2});

var gMotionModal = createOutputVariable({control: CONTROL_FORCE}, gFormat);
gMotionModal.format(0); // returns GO0

gMotionModal.format(0); // returns GOO (CONTROL_FORCE is set)
gMotionModal.setPrefix("[");

gMotionModal.setSuffix("]™);

gMotionModal.format(1); // returns "[GO1]"

var iOutput = createOutputVariable({prefix:"I", control.CONTROL_NONZERO}, xyzFormat);
iOutput.format(.001); // returns "10.001"
iOutput.format(.0001); // returns ™"

var zOutput = createOutputVariable({prefix:"Z", type: TYPE_INCREMENTAL, current:.5},
XyzFormat);

zOutput.format(1.2); // returns "Z0.7"

zOutput.format(1.5); // returns "Z0.3"

zOutput.format(1.5); // returns "

zOutput.format(0); // returns "Z-1.5"

var aFormat = createFormat({decimals:3, scale:DEG});

var aOutput = createOutputVariable({prefix:"A", type:TYPE_DIRECTIONAL, cyclicLimit:360,
cyclicSign:1}, aFormat);

aOutput.format(Math.PI / 2); // returns "A90"

Entry Functions 4-93

4 AUTODESK cAM Post Processor Guide 8/8/23

aOutput.format(Math.PI); // returns "A180"
aOutput.format(Math.P1 / 2); // returns "A-90"

aOutput.format(0); // returns "A-360"
Example OutputVariable Commands

4.1.10 Deprecated Output Variable Definitions
In support of existing post processors, the following legacy output variable definition are still supported.

createVariable({specifier:value, specifier:value, ...}, format);
createModal({specifier:value, specifier:value, ...}, format);
createReferenceVariable({specifier:value, specifier:value, ...}, format);

createlncrementalVariable({specifier:value, specifier:value, ...}, format);
Deprecated Output Variables Syntax

The createVariable, createModal, createReferenceVariable, and createlncrementalVariable functions
create output objects that are used to control the output of a code. The createVariable and createModal
objects are used to output codes/registers only when they change from the previous output value, the
createReferenceVariable is used to output values when they are different from a specified reference
value, and the createlncrementalVariable is used for the output of incremental values, i.e. the output
value will be an incremental value based on the previous value and the input value.

The following table lists the specifiers supported by the deprecated output variable definitions. Some of
the specifiers are common to all three objects and some to a particular object.

Specifier | Object Value

prefix (all) Text string that overrides the prefix defined in format.

force (alh) When set to true forces the formatting of the value even if it
does not change from the previous value. The default is
false.

onchange | createVariable Defines the method to be invoked when the formatting of

createModal the value results in output.

suffix createModal Text string that overrides the suffix defined in format.

first createlncrementalVariable | Defines the initial value of an incremental variable. You
will also have to call the variable.format(first) function
after creating the IncrementalVariable to properly store the
initial value.

Deprecated Output Variable Specifiers

The following table describes the functions assigned to the deprecated output variable objects. The
functions are properties of the Variable object(s) as listed.

Function Object Description

disable() Variable Disables this variable from being
ReferenceVariable output. Will cause the return value
IncrementalVariable

Entry Functions 4-94
v4a AUTODESK CAM Post Processor Guide 8/8/23

Function Object Description
from the format function to always be a
blank string (").

enable() Variable Enables this variable for output. This is

Reference Variable
IncrementalVariable

the default condition when the variable
is created.

format(value [,ref])

all)

Returns the formatted text string
representation of the number. Can
return a blank string if the value is the
same as the stored value in the Variable
and Modal objects, the same as the
reference value in the
ReferenceVariable object, or generates
a value of 0 in the IncrementalVariable
object. The call to format for a
ReferenceVariable object must contain
the second ref parameter, which
determines if the value should be
formatted for output.

getCurrent() Variable Returns the value currently stored in
Modal this variable.
IncrementalVariable

isEnabled() Variable Returns true if this variable is enabled
ReferenceVariable for output
IncrementalVariable

reset() Variable Forces the output of the formatted text
Modal string on the next call to format,

IncrementalVariable

overriding the rules for not outputting a
value.

setPrefix(prefix-text)

(all)

Overrides the prefix of the variable.

setSuffix(suffix-text)

Modal

Overrides the suffix of the variable.

Deprecated Output Variable Functions

4.1.11 Modal Groups

Modal groups are similar to Modal variables (createModal), but are used to define codes that can be
grouped together. For example, all G-codes that use the same formatting and output rules can be placed
in a modal group. Modal groups can be considered part of the Output Variable definitions but behave in
an expanded manner and limit control over the individual codes in a group element as can be done using
a modal variable.

\ createModalGroup({specifier:value, specifier:value, ...}, groups, format); \
createModalGroup Syntax

Entry Functions 4-95
v4a AUTODESK CAM Post Processor Guide 8/8/23

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (%)
and then by a value. Multiple specifiers are separated by commas. A format object is provided as the
third parameter. The specifiers are listed in the following table.

Specifier Value

force When set to true forces the formatting of the value even if it does not change
from the previous value. The default is false.

strict When set to true requires that any code output using this modal must be present

in one of the defined groups. An error will be output if any code is output that
is not in one of the groups. Specifying false allows for codes not belonging to a
group to be output. Codes that do not belong to a group will always be output,
meaning they belong to a non-modal group.

Output Variable Properties

The code groups are defined as arrays of codes within an array. Each individual group is treated similar
to as if it was defined as a separate Modal variable.

var mClampModal = createModalGroup(
{strict:false},
[
[10, 11], /I 4th axis clamp / unclamp
[12, 13] // 5th axis clamp / unclamp
I

mFormat

);

var gCodeGroup = createModalGroup(
{strict:true, force:false},
[
[0, 1, 2, 3], /[group O — motion codes
[17, 18, 19], // group 1 — plane selection codes
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89], // group 2 — cycle codes
]l
gFormat

);

Sample createModalGroup Commands

Once a modal group is created, it can be used to create a formatted text string for output. The following
table describes the functions assigned to the modal group object. Group numbers are based on 0, so the
first group is referenced as 0, the second as 1, etc. The functions are properties of the defined
ModalGroup object and are prefixed by the name of the group, for example mClampModal.disable().

Function Description
addCode(group, code) Adds the specified code to the given group.
createGroup Adds a group to the end of the groups.

Entry Functions 4-96
v4a AUTODESK CAM Post Processor Guide 8/8/23

Function Description

disable () Disables all defined groups in this modal from being output.
Will cause the return value from the format function to always
be a blank string (").

enable() Enables all defined groups in this modal for output. This is the
default condition when the modal is created.

format(code) Returns the formatted text string representation of the number.

Can return a blank string if the value is the same as the stored
value in the ModalGroup object. If the code does not belong to
a defined group, then it will always be output if the
ModalGroup was defined with strict:false, or an error will be
output if strict mode is enabled.

getActiveCode (group)

Returns the value currently stored in the specified group.

getGroup(code) Returns the group id for the specified code. If the code does not
belong to a group returns a very large number.

getNumberOfCodes() Returns the combined number of codes in all groups.

getNumberOfCodesinGroup(group) | Returns the number of codes in the specified group.

getNumberOfGroups() Returns the number of defined groups.

hasActiveCode(group) Returns true if the specified group has a valid code. Returns

false if a code has not been formatted in this group or if the
group has been reset.

inSameGroup(codel, code?)

Returns true if the two codes are in the same group.

isActiveCode(code) Returns true if the code is active within its group.

isCodeDefined(code) Returns true if the code is defined in any of the groups.

isEnabled() Returns true if this modal group is enabled for output.

isGroup(group) Returns true if the specified group id is defined.

makeActiveCode(code) Marks the specified code as the active code within its group.

removeCode(code) Removes the specified code from its group.

reset () Resets all groups and forces the output of the formatted text
string on the next call to format, overriding the rules for not
outputting a value.

resetGroup(group) Resets the specified group and forces the output of the
formatted text string on the next call to format, overriding the
rules for not outputting a value.

setAutoReset(flag) Sets the auto-reset mode. When set to true, all groups are reset
when a code that is not defined in any group is output. Strict
mode must be disabled to output an undefined code.

setForce(force) Forces the output of all group codes when enabled, even if the

code value is the same as the active code value.

setFormatNumber(format)

Overrides the format variable assigned to the modal group.

setPrefix(prefix-text)

Defines the prefix of all groups. If a prefix is defined in the
format assigned to the modal group, then the format prefix will
be appended to this prefix.

Entry Functions 4-97

4 AUTODESK cAM Post Processor Guide 8/8/23

Function Description
setSuffix(suffix-text) Defines the suffix of all groups. If a suffix is defined in the
format assigned to the modal group, then the modal group
suffix will be appended to the format suffix.

ModalGroup Functions

The following sample code shows how a single Modal Group can be used to define the clamping codes
for the rotary axes rather than creating two separate Modal variables to store the 4™ and 5" axes
clamping codes.

case COMMAND_LOCK_MULTI_AXIS:
if (machineConfiguration.isMultiAxisConfiguration() &&
(machineConfiguration.getNumberOfAxes() >= 4)) {
writeBlock(mClampModal.format(10)); // unlock 4th-axis motion
if (machineConfiguration.getNumberOfAxes() == 5) {
writeBlock(mClampModal.format(12)); // unlock 5th-axis motion

¥
ks

return;
case COMMAND_UNLOCK_MULTI_AXIS:
if (machineConfiguration.isMultiAxisConfiguration() &&
(machineConfiguration.getNumberOfAxes() >= 4)) {
writeBlock(mClampModal.format(11)); // unlock 4th-axis motion
if (machineConfiguration.getNumberOfAxes() == 5) {
writeBlock(mClampModal.format(13)); // unlock 5th-axis motion

¥
¥

Sample Modal Group Code

4.1.12 Fixed Settings

The fixed settings area of the global section defines settings in the post processor that enable features
that may change from machine to machine, but are not common enough to place in the Property Table.
These settings are usually not modified by the post processor, but can be modified to enable features on
your machine that are disabled in a stock post processor or vice versa.

/I fixed settings

var firstFeedParameter = 500;

var useMultiAxisFeatures = false;

var forceMultiAxisindexing = false; // force multi-axis indexing for 3D programs

var maximumLineLength = 80; // the maximum number of characters allowed in a line

var minimumCyclePoints = 5; // min number of points in cycle operation to consider for subprogram

var WARNING_WORK_OFFSET = 0;

var ANGLE_PROBE_NOT_SUPPORTED = 0;

Entry Functions 4-98
v4a AUTODESK CAM Post Processor Guide 8/8/23

var ANGLE_PROBE_USE_ROTATION = 1;

var ANGLE_PROBE_USE_CAXIS = 2;
Sample Fixed Settings Code

4.1.13 Collected State

The collected state area of the global section contains global variables that will be changed during the
execution of the post processor and are either referenced in multiple functions or need to maintain their
values between calls to the same function.

// collected state
var sequenceNumber;
var currentWorkOffset;

Sample Collected State Code

4.2 onOpen

| function onOpen() { |

The onOpen function is called at start of each CAM operation and can be used to define settings used in
the post processor and output the startup blocks.

Define settings based on properties

Define the multi-axis machine configuration

Output program name and header

Perform checks for duplicate tool numbers and work offsets
Output initial startup codes

aokrwdE

4.2.1 Define Settings Based on Post Properties

The fixed settings section at the top of the post processor contain settings that are fixed and will not be
changed during the processing of the intermediate file. Settings and variables that are dependant on the
properties defined in the Property Table are defined in the onOpen function, since this is the function
called when the post processor first starts.

Some of the variables that may be defined here are the maximum circular sweep, starting sequence
number, formats, properties that can be changed using a Manual NC command, etc.

if (getProperty(“useRadius")) {
maximumCircularSweep = toRad(90); // avoid potential center calculation errors for CNC

¥

/I define sequence number output
if (getProperty(""sequenceNumberOperation™)) {

Entry Functions 4-99
v4a AUTODESK CAM Post Processor Guide 8/8/23

setProperty("showSequenceNumbers", false);
sequenceNumber = getProperty("'sequenceNumberStart™);

Il separate codes with a space in output block
if ("getProperty("separateWordsWithSpace™)) {
setWordSeparator(*");

¥

/l Manual NC command can change the transfer type
transferType = parseToggle(getProperty(“transferType"), "PHASE", "SPEED");
Defining Dynamic Variables in the onOpen Function

The majority of machines on the market today accept input in both inches and millimeters. It is possible
that your machine must be programmed in only one unit. If this is the case, then you can define the unit
variable in the onOpen function to force the output of all relevant information in inches or millimeters.

| unit= MM; // set output units to millimeters, use IN for inches |
Support for Only One Input Unit

4.2.2Define the Multi-Axis Configuration

The onOpen function contains calls to the functions that will optionally create a hardcode machine
configuration and activate the machine configuration, whether it be hardcoded or defined in the CAM
system. Following is an example of this code. For a complete description of defining a multi-axis
configuration please see the Multi-Axis Post Processors chapter.

// define and enable machine configuration
receivedMachineConfiguration = (typeof machineConfiguration.isReceived == "function™) ?
machineConfiguration.isReceived() :
((machineConfiguration.getDescription() 1= "") ||
machineConfiguration.isMultiAxisConfiguration());
if (typeof defineMachine == "function") {
defineMachine(); // hardcoded machine configuration
}

activateMachine(); // enable the machine optimizations and settings
Defining the Machine Configuration

4.2.3 Output Program Name and Header

The program name and program comment are defined in the Post Process tab of the CAM setup in
HSM. The programNamelsinteger variable defined at the top of the program determines if the program
name needs to be a number or can be a text string.

Entry Functions 4-100
v4a AUTODESK CAM Post Processor Guide 8/8/23

@ SETUP: SETUP1
@' Setup Stock @ Post Process

¥ Program

Program Name/Number 1001 <:
Program Comment Ball Vahlre Compone

¥ Machine WCS

WCS Offset 0

Probe WCS override 0

Multiple WCS Offzets D

(i] 0K Cancel

Defining the Program Name and Comment

writeIln("%"); // output start of NC file
if (programName) {
var programld;
try {
programld = getAsInt(programName);
} catch(e) {

error(localize("Program name must be a number."));
return;

}
if (!((programld >= 1) && (programld <= 99999))) {

error(localize("Program number is out of range."));
return;

¥

writeln(
"O" + oFormat.format(programid) +

conditional(programComment, " " + formatComment(programComment.substr(0,
maximumLineLength - 2 - ("O" + oFormat.format(programld)).length - 1)))

);
lastSubprogram = programld;
}else {
error(localize("Program name has not been specified."));
return;
}

Output the Program Name as an Integer and Program Comment

Some machines don't use a program number and accept the program name as a comment.

writeln("%"); // output start of NC file
if (programName) {

writeComment(programName);

¥

Entry Functions 4-101
v4a AUTODESK CAM Post Processor Guide 8/8/23

if (programComment) {
writeComment(programComment);

¥

Output the Program Name as a Comment

The program header can consist of the output filename, version numbers, the run date and time, the

description of the machine, the list of tools used in the program, and setup notes.

// Output current run information
if (hasParameter(*“generated-by") && getParameter(“'generated-by")) {

var eos = longDescription.indexOf(".");

writeComment(localize(" Post Processor: ") + ((eos == -1) ?
longDescription : longDescription.substr(0, eos + 1)));

if ((typeof getHeaderVersion == "function™) && getHeaderVersion()) {
writeComment(* " + localize("Post version™) + ": " + getHeaderVersion());

}

if ((typeof getHeaderDate == "function™) && getHeaderDate()) {
writeComment(" " + localize("Post modified™) + ": " + getHeaderDate());

var d = new Date(); // output current date and time

d.toLocaleTimeString());

writeComment(" "+ localize("CAM") + ": " + getParameter("generated-by"));
}
if (hasParameter(“document-path™) && getParameter(document-path™)) {
writeComment(" "+ localize("Document”) + ": " + getParameter(""document-path™));
}

writeComment(* " + localize("Date") + ": " + d.toLocaleDateString() + " " +

Output the Description of the Current Run

/l dump machine configuration

var vendor = machineConfiguration.getVendor();

var model = machineConfiguration.getModel();

var description = machineConfiguration.getDescription();

if (getProperty("writeMachine") && (vendor || model || description)) {
writeComment(localize("Machine™));

if (vendor) {
writeComment(" " + localize("vendor”) + ": " + vendor);
}
if (model) {
writeComment(" " + localize("model”) + ": " + model);
}
if (description) {
writeComment(" " + localize("description™) + ": " + description);
}

¥

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-102

Output Machine Information

In the above code sample, the machine information is retrieved from the Machine Configuration, but a
machine configuration file is not always available to the post processor, so it is possible to hard code the
machine description.

machineConfiguration.setVendor("Doosan™);
machineConfiguration.setModel("Lynx");

machineConfiguration.setDescription(description);
Defining the Machine Information

[l dump tool information
if (getProperty("writeTools")) {
var zRanges = {};
if (is3D()) {
var numberOfSections = getNumberOfSections();
for (var i = 0; i < numberOfSections; ++i) {
var section = getSection(i);
var zRange = section.getGlobalZRange();
var tool = section.getTool();
if (zRanges[tool.number]) {
zRanges[tool.number].expandToRange(zRange);
}else {
zRanges[tool.number] = zRange;
}
¥
}

var tools = getToolTable();
if (tools.getNumberOfTools() > 0) {
for (var i = 0; i <tools.getNumberOfTools(); ++i) {
var tool = tools.getTool(i);
var comment = "T" + toolFormat.format(tool.number) + " " +
"D=" + xyzFormat.format(tool.diameter) + " " +
localize("CR") + "=" + xyzFormat.format(tool.cornerRadius);
if ((tool.taperAngle > 0) && (tool.taperAngle < Math.Pl)) {
comment +=" " + localize("TAPER") + "=" + taperFormat.format(tool.taperAngle) +
localize("deg");
}
if (zRanges[tool.number]) {
comment +=" - " + localize("ZMIN") + "=" +
xyzFormat.format(zRanges[tool.number].getMinimum());
}
comment +=" - " + getToolTypeName(tool.type);
writeComment(comment);

¥

Entry Functions 4-103
v4a AUTODESK CAM Post Processor Guide 8/8/23

Output List of Tools Used

The following code is used to output the notes from the first setup. The property showNotes is defined
in the properties, see the Operation Comments and Notes section to see how to define this property.

/[output setup notes
if (getProperty(""'showNotes")) {
writeSetupNotes();

¥

Output Notes from First Setup

If your post needs to output the notes from multiple setups, then additional code outside of onOpen
needs to be added.

First, define the firstNote property in the collected state section of the post.

/I collected state

var firstNote; // handles output of notes from multiple setups
Define the firstNote Global Variable

In the onParameter function define the logic to process the job-notes parameter.

function onParameter(name, value) {
switch (name) {

case ""job-notes'":

if (IfirstNote) {
writeNotes(value, true);

}
firstNote = false;
break;

}

}

Handle the Setup Notes in onParameter

And finally, implement the writeText function. It can be placed in front of the onParameter function.
This function can also be used to output the text from the Pass through Manual NC command.

/[l writes out multi-line text either as-is or as a comment
function writeNotes(text, asComment) {
if (text) {
var lines = String(text).split("\n");
var r2 = new RegExp("[\s]+$", "g");

Entry Functions 4-104
v4a AUTODESK CAM Post Processor Guide 8/8/23

for (line in lines) {
var comment = lines[line].replace(r2, "");
if (comment) {
if (asComment) {
onComment(comment);

}else {

writeln(comment);

The writeNotesFunction is used to Output Multi-line Text

4.2.4 Performing General Checks

Basic checks for using duplicate tool numbers, undefined work offsets, and other requirements can be
done in the onOpen function since all operations can be accessed at any time during post processing.

if (false) { // set to true to check for duplicate tool numbers w/different cutter geometry
I/ check for duplicate tool number
for (var i = 0; i < getNumberOfSections(); ++i) {
var sectioni = getSection(i);
var tooli = sectioni.getTool();
for (varj =i+ 1;j < getNumberOfSections(); ++j) {
var sectionj = getSection(j);
var toolj = sectionj.getTool();
if (tooli.number == toolj.number) {
if (xyzFormat.areDifferent(tooli.diameter, toolj.diameter) ||
xyzFormat.areDifferent(tooli.cornerRadius, toolj.cornerRadius) ||
abcFormat.areDifferent(tooli.taperAngle, toolj.taperAngle) ||
(tooli.numberOfFlutes != toolj.numberOfFlutes)) {
error(
subst(
localize("Using the same tool number for different cutter geometry for operation '%1' and
'%2'."),
sectioni.hasParameter(*operation-comment™) ?
sectioni.getParameter(“operation-comment”) : ("#" + (i + 1)),
sectionj.hasParameter("operation-comment") ?
sectionj.getParameter("operation-comment™) : ("#" + (j + 1))
)

);
return;
}
}
}

Entry Functions 4-105
v4a AUTODESK CAM Post Processor Guide 8/8/23

Check for Duplicate Tool Numbers using Different Cutter Geometry

// don't allow WCS 0 unless it is the only WCS used in the program
if ((getNumberOfSections() > 0) && (getSection(0).workOffset == 0)) {
for (var i = 0; i < getNumberOfSections(); ++i) {
if (getSection(i).workOffset > 0) {
error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));
return;

¥
ks
¥

Check for Work Offset 0 when Multiple Work Offsets are Used in Program

4.2.50utput Initial Startup Codes

Codes that set the machine to its default condition are usually output at the beginning of the NC file.
These codes could include the units setting, absolute mode, the feedrate mode, etc.

I/l output default codes
writeBlock(gAbsIncModal.format(90), gFeedModeModal.format(94), gPlaneModal.format(17),
gFormat.format(49), gFormat.format(40), gFormat.format(80));

/[output units code

switch (unit) {

case IN:
writeBlock(gUnitModal.format(20));
break;

case MM:
writeBlock(gUnitModal.format(21));
break;

¥

Output Initial Startup Codes

4.3 onSection

| function onSection() {

The onSection function is called at start of each CAM operation and controls the output of the following
blocks.

1. End of previous section
2. Operation comments and notes
3. Tool change

Entry Functions 4-106
v4a AUTODESK CAM Post Processor Guide 8/8/23

4. Work plane
5. Initial position

2 B setups
2 B Setup for Metric tools

4F]

A Z [)20-Face @

== #{ _@50mm face

5 wcs
A 177 bytes

A < [T2]20-Contour ¢

] #2-o8mm fat
B wcs
il 534 bytes

> [[T2]20-Bore

onSection is Called for Each Operation

The first part of onSection determines if there is a change in the tool being used and if the Work

Coordinate System offset or Work Plane is different from the previous section. These settings determine

the output required between operations.

var insertToolCall = isToolChangeNeeded(*number™);
var newWorkOffset = isFirstSection() ||

(getPreviousSection().workOffset != currentSection.workOffset); // work offset changes
var newWorkPlane = isNewWorkPlane();

Tool Change, Work Coordinate Sysetm Offset, and Work Plane Settings

4.3.1 Ending the Previous Operation

You would expect that the NC blocks output at the end of an operation to be output in the onSectionEnd

function, but in most posts, this is handled in onSection and for the final operation, in the onClose
function. This code will typically stop the spindle, turn off the coolant, and retract the tool.

if (insertToolCall || newWorkOffset || newWorkPlane) {

/I stop spindle before retract during tool change
if (insertToolCall && lisFirstSection()) {
onCommand(COMMAND_STOP_SPINDLE);

¥

// retract to safe plane
writeRetract(2);

Entry Functions 4-107

4 AUTODESK cAM Post Processor Guide 8/8/23

onCommand(COMMAND_COOLANT_OFF);

if (lisFirstSection() && getProperty(“optionalStop™)) {
onCommand(COMMAND_OPTIONAL_STOP);

¥

Ending the Previous Operation

The code to retract the tool can vary from post to post, depending on the controller model and the
machine configuration. It can output an absolute move to the machine home position, for example using
G53, or move to a clearance plane relevant to the current work offset, for example G00 Z5.0.

The onSectionEnd section has an example of ending the operation when not done in the onSection
function.

4.3.2 Operation Comments and Notes

The operation comment is output in the onSection function and optionally notes that the user attached to
the operation.

d E«’ - fsf‘gtfupfsf -

zzzzzzzzzzzzzzzzzzzzzz

£33 #1 - @50 mm face

b wes

il 177 bytes
Create Operation Comment

var comment = getParameter("operation-comment", <);
if (comment) {
writeComment(comment);

¥

Output Operation Comment

Entry Functions 4-108
v4a AUTODESK CAM Post Processor Guide 8/8/23

=] Compare and Edit

L wel < Generate Toolpath
M 177 £0, Simulate

- [5] PostProcess

d s 2120 [setup Sheet
u #2 Clear Toolpath
{! Machining Time
L wc
Make Default

il s34 [] Suppress

ﬁ"' [T2] 2D |:| Protect
[] Optional

Create Derived Cperation [

Drilling

coolant cod
Add to New Folder

manual NC | [E. Add to New Pattern

SRS R RA RS
oppooy

Sy 347 Duplicate
: Cut
5X Simultan Copy
[Ls Delete
o | Edit Notes

& Show Log
Right Click to Show Menu to Create Operation Notes

The output of the operation notes is normally handled by the post processor property showNotes.

I user-defined properties
properties = {

showNotes: {

title :"Show notes",
description: "Writes setup and operation notes as comments in the output code.",
type :"boolean",
value :false,
scope : “"post”
h
}

Define the showNotes Property

/[output section notes
if (getProperty("'showNotes™)) {
writeSectionNotes();

¥

Entry Functions 4-109
v4a AUTODESK CAM Post Processor Guide 8/8/23

Output Operation Notes

4.3.3 Tool Change

Tool change blocks are output whenever a new tool is loaded in the spindle or the tool change is forced,
either by a Manual NC Force tool change command or internally, for example when a safe start is
forced at each operation. The tool change blocks usually contain the following information.

1. Tool number and tool change code
2. Tool comment
3. Comment containing lower Z-limit for tool (optional)
4. Selection of next tool
5. Spindle speed and direction
6. Coolant codes
© FACE 2D-FACE = : i—-‘_@,
I Select Toal [P Library: [Post Processor Benchmark - Milling_MM] L
¥ |05 =
B B | ow .) [cutter | Shaft | Holder | Feedaspesd | PostProcessor |
peration ype imensions
Tool Select.. Mg, - NC
#1-osom Horaries tHame rurser: €= conmers: €
4[] Al 4 Post Processor Benchmark - Milling_M| 1 + 2" Face Mil
Coolant Flood 4 [J] Documents |8 1 - 250 mm face mill B Length offset: ¢ Coolant:
Post P Bee |1 e =
¥ Feed & Speed Unt‘ﬂe?(f;m' = & EditTool émum“m 1 <+ |Flood
Spindie Speed =000 rpm Post Processor Ben... || == CopyTool CuleC Diameter fosetl<= [el tool change
E— > Samples Paste Too Crrl+V ! i = [Break control
Sirface Sncod —— »] Vendors ES Duplicate Tool Crl+D Turret: 0w
Ramp Spindle Spesd 5000 rpm > ¥ Local = eete Toot e 0 = [#] Live tool
Cutting Feedrate 1000 mmin || Rarrumbser Tacks o
Feed perTooth 0.0666857] Tl Remave Unused Took
Lead-in Fecdrate 1000 mmi Shaw Gperatians
Lead-Out Feedrate 1000 mmin|
Ramp Feedrate 500 mm/mi
Plunge Feedrate 500 mm/mi
Feed per Revolution 0.1 mm
oK

Tl i

A

Tool Parameters Used in Tool Change

The Length Offset value is usually output with the Initial Position as described further in this chapter.
The Diameter Offset value is output with a motion block in onLinear. All other tool parameters are
output in the tool change code.

if (insertToolCall) {

if (tool.number > numberOfToolSlots) {
warning(localize("Tool number exceeds maximum value."));

¥

writeBlock("T" + toolFormat.format(tool.number), mFormat.format(6));
if (tool.comment) {
writeComment(tool.comment);

Entry Functions 4-110
v4a AUTODESK CAM Post Processor Guide 8/8/23

Output Tool Change and Tool Comment

You will have to change the setting of showToolZMin to true if you want the lower Z-limit comment
output at a tool change.

var showToolZMin = true;
if (showToolZMin) {
if (is3D()) {
var zRange = toolZRange();
writeComment(localize("ZMIN™) + "=" + zRange.getMinimum());
}
}

Output Lower Limit of Z for This Operation

The selection of the next tool is optional and is controlled by the post processor property preloadTool.

Il user-defined properties
properties = {

“p.)reloadTooI: {

title : "Preload tool",
description: “Preloads the next tool at a tool change (if any).",
type :"boolean”,
value :true,
scope :"post"
}

¥

Define the preload Tool Property

The first tool will be loaded on the last operation of the program.

Il preload next tool
if (getProperty("preloadTool™)) {
var nextTool = getNextTool(“number”);
if (nextTool) {
writeBlock("T" + toolFormat.format(nextTool.number));
}else {
Il preload first tool
var firstToolINumber = getFirstTool().number;
if (tool.number != firstToolNumber) {
writeBlock("T" + toolFormat.format(firstTooINumber));

¥
¥
¥

Entry Functions 4-111
v4a AUTODESK CAM Post Processor Guide 8/8/23

Preload the Next Tool

The spindle codes will be output with a tool change and if the spindle speed changes.

¥

)i
¥

if (insertToolCall ||
isFirstSection() ||
(rpmFormat.areDifferent(tool.spindleRPM, sOutput.getCurrent())) ||
(tool.clockwise != getPreviousSection().getTool().clockwise)) {
if (tool.spindleRPM < 1) {
error(localize("Spindle speed out of range."));
return;

if (tool.spindleRPM > 99999) {
warning(localize("Spindle speed exceeds maximum value."));

writeBlock(
sOutput.format(tool.spindleRPM), mFormat.format(tool.clockwise ? 3 : 4)

Output Spindle Codes

You will find different methods of outputting the coolant codes in the various posts. The latest method
uses a table to define the coolant on and off codes. The table is defined just after the properties table at
the top of the post processor. You can define a single code for each coolant mode or multiple codes

using an array. When adding or changing the coolant codes supported by your machine, this is the only
area of the code that needs to be changed.

]

var singleLineCoolant = false; // specifies to output multiple coolant codes in one line rather than in
separate lines

I/ samples:

// {id: COOLANT_THROUGH_TOOL, on: 88, off: 89}

I/ {id: COOLANT_THROUGH_TOOL, on: [8, 88], off: [9, 89]}
var coolants = [

{id:
{id:
{id:
{id:
{id:
{id:
{id:
{id:
{id:

COOLANT_FLOOD, on: 8},

COOLANT_MIST},

COOLANT_THROUGH_TOOL, on: 88, off: 89},
COOLANT_AIR},

COOLANT_AIR_THROUGH_TOOL},

COOLANT_SUCTION},

COOLANT_FLOOD_MIST},
COOLANT_FLOOD_THROUGH_TOOL, on: [8, 88], off: [9, 89]},
COOLANT_OFF, off: 9}

Coolant Definition Table

The coolant code is output using the following code in onSection.

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-112

/I set coolant after we have positioned at Z
setCoolant(tool.coolant);

Output of Coolant Codes

The setCoolant function will output each coolant code in separate blocks. It does this by calling the
getCoolantCodes function to obtain the coolant code(s) and using writeBlock to output each individual
coolant code. Both of these functions are generic in nature and should not have to be modified.

It may be that you want to output the coolant codes(s) in a block with other codes, such as the initial
position or the spindle speed. In this case you can call getCoolantCodes directly in the onSection
function and add the output of the coolant codes to the appropriate block. The following example will
output the coolant codes with the initial position of the operation.

var coolantCodes = getCoolantCodes(tool.coolant);
var initialPosition = getFramePosition(currentSection.getlnitialPosition());
writeBlock(
gAbsincModal.format(90),
gMotionModal.format(0),
xOutput.format(initialPosition.x),
yOutput.format(initialPosition.y),
coolantCodes,

);

getCoolantCodes Function Supports Multiple Codes for Single Coolant Mode

4.3.4 Work Coordinate System Offsets
The active Work Coordinate System (WCS) offset is defined in the CAM Setup dialog. You can
override the WCS defined in the setup in either a folder or pattern. The wcsDefinitions variable defines

the supported WCS codes that can be output and it is recommended that you include this variable
definition in your post. All examples in this section assume that wcsDefinitions is defined.

If a CAM Machine Configuration is defined the WCS can be selected using the number as expected by
the machine control. When a CAM Machine Configuration is not defined, then a simple value will be
displayed.

Entry Functions 4-113
v4a AUTODESK CAM Post Processor Guide 8/8/23

@ SETUP : SETUP FOR METRIC TOOLS: MILLING & SETUP : SETUP FOR METRIC TOOLS: MILLING

(P setup Stock | <} Part Position | [E] PostProcess
(P Setup Stock | [B]] PostProcess
¥ Program
* Program
Program Name/Number | 1001

Program Comment Program Name/Mumber | 1001

- Program Coemment
¥ Machine WCS

Format Standard - .
¥ Machine WCS

WCS
WCS Offzet 1

Multiple WCS Offsets G

G54
Multiple WCS O ffzets D

(3] 0K Cancel (i] 0K Cancel
WCS Offset with a Machine Configuration WCS Offset without a Machine Configuration

WCS codes are output when a new tool is used for the operation or when the WCS offset number used is
changed. WCS offsets are typically controlled using the G54 to G59 codes and possibly an extended
syntax for handling work offsets past 6.

wcsDefinitions is defined just after the coolants table at the top of the post processor.

var wcsDefinitions = {
useZeroOffset: false, // set to "true’ to allow for workoffset 0, ‘false’ treats 0 as 1
wcs |
{name:"Standard", format:"G", range:[54, 59]}, // standard WCS, output as G54-G59
{name:"Extended", format:"G59.#", range:[1, 64]} // extended WCS, output as G59.7, etc.
I/ {name:"Extended", format:"G54 P#", range:[1, 64]} // extended WCS, output as G54 P7, etc.
|

o

Parameters Description

useZeroOffset Set to true to enable a work offset value of 0. Setting it to false will treat a
work offset of 0 as 1.

WCS Contains the definitions of the supported WCS formats.

name The name of the WCS output format. This will usually be Standard or
Extended. The name is displayed in the Format field of the Machine WCS
frame.

format The output format of the WCS. This is a text string that has an optional #
character that defines where the offset value will be placed. If # is not
specified, then the offset value will be placed at the end of the string. You can
also use multiple consecutive # characters to define the number of digits to
output with the WCS value, for example P## will output PO1. Specifying $#
will place a # character in the output.

range Defines the valid range of work offsets for the defined format.

Entry Functions 4-114
v4a AUTODESK CAM Post Processor Guide 8/8/23

The wesDefinitions Variable

The post processor kernel will format the output WCS code based on the format defined in
wcsDefinitions. Both a string and number is available to the post processor in the section object.

Variable Description
section.wcs The output code of the work offset (G54, G51 P1, etc.).
section.workOffset | The work offset number.

Il wcs
if (insertToolCall) { // force work offset when changing tool
currentWorkOffset = undefined;

¥

if (currentSection.workOffset != currentWorkOffset) {
writeBlock(currentSection.wcs);
currentWorkOffset = currentSection.workOffset;

¥

Output the Work Coordinate System Offset Number

4.3.5Work Plane - 3+2 Operations

3+2 operations are supported by defining a tool orientation for the operation. This tool orientation is
referenced as the Work Plane in the post processor. The tool orientation is defined in the Geometry tab
of the operation.

@ FACE : 20-FACE1

¥ d O HEH &

¥ Stock Contours

Stock Selections X
¥ (/) Tool Orientation @

Crientation Select Z axis/pla...
Z Axis [» Face X

Flip Z Axis o

X Axdis [

Flip X Axis L

Origin Selected point v

Tool Orientation Origin [}Puint x

(i) OK Cancel

Defining the Work Plane

Entry Functions 4-115
v4a AUTODESK CAM Post Processor Guide 8/8/23

Work Plane for 3+2 Operation

The output for a Work Plane will either be the rotary axes positions or the definition of the Work Plane
itself as Euler angles. For machine controls that support both formats the useMultiAxisFeatures variable
determines the Work Plane method to use. This variable, along with other variables that control 3+2
operations, is defined with the machine configuration settings and functions towards the top of the post
processor.

/I Start of machine configuration logic

var useMultiAxisFeatures = false; // enable to use control enabled tilted plane
var useABCPrepositioning = false; // enable to preposition rotary axes prior to tilted plane output
var forceMultiAxisIndexing = false; // force multi-axis indexing for 3D programs
var eulerConvention = EULER ZXZ_R; // euler angle convention for 3+2 operations
Definition of Variables for Tilted Plane Support

variable Description
useMultiAxisFeatures Enable this setting when the control supports tilted plane codes for 3+2
operations, such as G68.2, CYCLES800, PLANE SPATIAL, DWO, etc.
When it is disabled, the rotary axes will be output for 3+2 operations and
the output coordinates could be adjusted for the tables/heads based on the
TCP setting for each axis.
useABCPrepositioning | Enable to position the rotary axes prior to the output of the tilted plane.
Disable to only output the tilted plane. This variable is only used when
useMultiAxisFeatures is set to true.
forceMultiAxisIndexing | Forces the output of the rotary axes/tilted plane when the program is purely
3-axis. Disabling this variable will not output the rotary axis positions if
the entire program is 3-axis.
eulerConvention Defines the order of the Euler angle calculations that is required by the
machine for tilted plane output. If the post processor does not support Euler
angles, then this setting will be ignored.

Variables that Control the Output of 3+2 Operations

Entry Functions 4-116
v4a AUTODESK CAM Post Processor Guide 8/8/23

The eulerConvention setting is passed to the getEuler2 function and is used to calculate the Euler angles
for the Work Plane. It specifies the order of the primary axis rotations that the machine control requires
and can be one of the values in the following table.

Parameter Parameter Parameter Parameter

EULER_XYZ R EULER_XYX R EULER_XZX R EULER_XZY R
EULER_YXY_R EULER_YXZ R EULER_YZX R EULER_YZY_R
EULER_ZXY_R EULER ZXZ R EULER ZYX R EULER ZYZ R
EULER _XYZ_ S EULER_XYX_ S EULER _XZX S EULER_XZY_S
EULER_YXY_S EULER _YXZ_ S EULER YZX S EULER _YZY_S
EULER_ZXY_S EULER_ZXZ S EULER_ZYX_S EULER_ZYZ S

Euler Angle Order

Check the Programming Manual for your machine to determine if Euler angles are supported and the
order of rotations. The _R (rotated) variants of the Euler angles will use the modified orientation after
each rotation for each axis. The _S (static) variants will use the original coordinate system for all
rotations and is sometimes referred to as pitch, row, yaw.

The useMultiAxisFeatures and useABCPrepositioning variables can be controlled from the post
processor properties, simply adding a property with the same name. The activateMachine function
automatically checks for this property and will use it if it is defined.

properties = {

useMultiAxisFeatures: {
title: "Use G68.2",
description: "Enable to output G68.2 blocks for 3+2 operations, disable to output rotary angles.",
type: "boolean,
value: true,
scope:["'machine”, "post"],
group:"multiaxis"},
useABCPrepositioning: {
title: "Preposition rotaries",
description: "Enable to preposition rotary axes prior to G68.2 blocks.",
scope: ["'machine”, "post™],
group: "multiaxis”,
type: "boolean”,
value: true

2

Defining useMultiAxisFeatures and useABCPrepositioning as Properties

The code handling 3+2 operations is usually found in the defineWorkPlane function but can also be
defined as inline code within the onSection function. The preferred method is using the

Entry Functions 4-117
v4a AUTODESK CAM Post Processor Guide 8/8/23

defineWorkPlane function, which controls the calculation and output of the rotary angles for multi-axis
and 3+2 operations. defineWorkPlane will be called from onSection.

/I position rotary axes for multi-axis and 3+2 operations
var abc = defineWorkPlane(currentSection, true);
Calling the defineWorkPlane Function

The defineWorkPlane function is defined as follows and returns the initial rotary positions for multi-axis
and 3+2 operations.

| defineWorkPlane(_section, _setWorkPlane) |

Arguments Description
_section The operation (section) used to calculate the rotary angles.
_setWorkPlane true = output the rotary angle positions and adjust the output coordinates for

the 3+2 rotation. false = don’t output the rotary angle positions. The rotary
angles will still be calculated and the output coordinates will be adjusted for

the 3+2 rotation.
The defineWorkPlane Function

/I use Euler angles for Work Plane

if (useMultiAxisFeatures) {
var abc = _section.workPlane.getEuler2(eulerConvention);
cancelTransformation();

/I use rotary angles for Work Plane

}else {
abc = getWorkPlaneMachineABC(_section.workPlane, true);

¥

/l output the work plane

if (_setWorkPlane) {
setWorkPlane(abc);

¥
¥

Work Plane Calculations

The function getWorkPlaneMachineABC is used to calculate the rotary axes positions that satisfy the
Work Plane. It will return the calculated angles of either the rotary axis or tilted plane positions.

| getWorkPlaneMachineABC(workPlane, rotate) |

Arguments Description

workPlane The work plane matrix used to calculate the rotary-angles. This variable is
typically section.workPlane.

rotate Enable to adjust the output coordinates for the work plane orientation. Disable
to just calculate the rotary angles and not adjust the XYZ coordinates for the
axis rotations.

Entry Functions 4-118
v4a AUTODESK CAM Post Processor Guide 8/8/23

The getWorkPlaneMachineABC Function
This function is standard from post to post, but there are a couple of areas that may need to be modified.

The first step is to calculate the rotary angles based on the work plane orientation by calling the
getABCByPreference function.

var currentABC = isFirstSection() ? new Vector(0, 0, 0) : getCurrentDirection();
var abc = machineConfiguration.getABCByPreference(W, currentABC, ABC,
PREFER_PREFERENCE, ENABLE_ALL);
Calculate the Rotary Axis Angles Based on the Work Plane

abc = machineConfiguration.getABCByPreference(workPlane, current, controllingAxis, type, options)
abc = section.getABCBYPreference(machineConfiguration, workPlane, current, controllingAxis, type,
options)

Arguments Description
machineConfiguration | The Machine Configuration. This parameter is only specified with the
section.getABCByPreference version.

workPlane The work plane matrix used to calculate the rotary-angles. This variable is
typically section.workPlane.
current The current rotary angles. This is usually the ABC position returned by

getCurrentDirection. In the first operation this value is set to a tool axis, so
the current rotary angles are defined as 0,0,0 in this case.

controllingAxis The axis used to determine the preferred solution in conjunction with the type
argument. It can be A, B, or C for a single axis, or ABC to consider all
defined rotary axes.

type The preference type as described in the Preference Type table.
options Options used to control the solution as described in the Controlling Options
table.

The getABCByPreference Function

Preference Type Description

PREFER_PREFERENCE | Uses the preference specified with the axis, either in the CAM Machine
Configuration or in the createAxis function for hardcoded kinematics.
PREFER_CLOSEST Selects the solution closest to the current rotary axes position. All
preference types will choose the closest solution that satisfies the
preference type chosen. PREFER_CLOSEST will select the closest
solution without regards to any other preference.

PREFER_POSITIVE The closest solution with a positive angle for the controlling axis. This
preference cannot be used when ABC is the controlling axes.
PREFER_NEGATIVE The closest solution with a negative angle for the controlling axis. This
preference cannot be used when ABC is the controlling axes.

Entry Functions 4-119
v4a AUTODESK CAM Post Processor Guide 8/8/23

Preference Type

Description

PREFER_CLW The closes solution that moves in a clockwise direction from the current
axis position. This preference cannot be used when ABC is the
controlling axes.

PREFER_CCW The closes solution that moves in a counterclockwise direction from the

current axis position. This preference cannot be used when ABC is the
controlling axes.

The Preferred Solution Types

Controlling Options

Description

ENABLE_NONE

Disables all controlling options.

ENABLE_RESET

Respects the reset parameter in the axis definitions. The reset parameter
resets the axis to 0 degrees before calculating the closest solution.

ENABLE_WCS

Solves for a rotary axis perpendicular to the spindle vector as defined by
the tool orientation of the operation. For example, if the tool orientation
is facing up in Z and has an XY -rotation, then the C-axis will use the X-
axis orientation of the rotation to determine the C-axis position.

ENABLE_LIMITS

Solves for a rotary axis perpendicular to the spindle vector to keep the
linear axes within their defined limits. The limits (range) of the linear
axes must be defined in the Machine Configuration. This option is only
valid for the section.getABCByPreference version.

ENABLE_ALL

Enables all controlling options.

The Controlling Options for the Rotary Axes Solution

Use ENABLE_WCS for a Tool Perpendicular to the Rotary Table

There are two variations of the getABCBYyPreference function, one in the machineConfiguration object
and the other in the section object. The only difference between the two is that the section function
supports the ENABLE_LIMITS option, while the machineConfiguration function does not. The
ENABLE_LIMITS works with rotary tables that are perpendicular to the spindle vector and will adjust

Entry Functions 4-120

va AUTODESK cAM Post Processor Guide 8/8/23

the rotary table position to bring the linear XYZ coordinates within their defined limits if possible. If it
is not possible to bring the machine within its limits, then the calculated rotary axis positions will be the
same as if ENABLE_LIMITS was not specified.

You must define the limits of the linear axes in the machine configuration when using

ENABLE_LIMITS. The limits can be defined as part of an external Machine Configuration or
hardcoded within the post processor if a Machine Configuration is not used.

Linear Axis

Coordinate ¥ e

MName |

Home Paosition |EI M

|
|
Resolution |EI mm |
|

Rapid Feedrate |EI i, frmin

Max Feedrate |EI mm,/min

Mir Maix

Range |EI M | | 1720 mm |

Defining the Limits of a Linear Axis in the Machine Configuration

I define linear axes limits

var xXAxis = createAxis({actuator:"linear", coordinate:0, table:true, axis:[1, 0, 0],
range:[XAxisMinimum, xAxisMaximum]});

var yAxis = createAxis({actuator:"linear", coordinate:1, table:true, axis:[0, 1, 0],
range:[yAxisMinimum, yAxisMaximum]});

var zAxis = createAxis({actuator:"linear", coordinate:2, table:true, axis:[0, 0, 1],
range:[-100000, 1000001});

machineConfiguration.setAxisX(xAXxis);

machineConfiguration.setAxisY (yAXis);

machineConfiguration.setAxisZ(zAXxis);

Defining the Limits of the Linear Axes in the Post Processor

Since the getABCByPreference function will return a rotary axis position even if the machine is not
within the defined linear limits, you must call the doesToolPathFitWithinLimits function to determine if
the calculated rotary axis position will keep the machine within limits for this operation.

bestABC = section.getABCBYyPreference(machineConfiguration, section.workPlane,
getCurrentDirection(), C, PREFER_CLOSEST, ENABLE_RESET | ENABLE_LIMITS);

bestABC = section.doesToolpathFitWithinLimits(machineConfiguration, bestABC) ?
bestABC : undefined,;

Determine if Linear Axes are Within Limits

Entry Functions 4-121
v4a AUTODESK CAM Post Processor Guide 8/8/23

| withinLimits = section.does ToolpathFitWithinLimits(machineConfiguration, abc)

Arguments Description

machineConfiguration | The Machine Configuration.

abc The rotary angle positions used to determine if the linear XYZ axes are
within their defined limits.

The doesToolpathFitWithinLimits Function

The 3+2 operation coordinates may need to be adjusted for the rotary axes. This is done by calling
section.optimize3DPositionsByMachine with the rotary axes and optimization type. Most posts will use
the Tool Control Point (TCP) setting for each axis by using the OPTIMIZE_AXIS setting.

if (IcurrentSection.isOptimizedForMachine()) {
machineConfiguration.setToolLength(addToolLength ? getBodyLength(tool)); // define the tool length for
head adjustments
currentSection.optimize3DPositionsByMachine(machineConfiguration, abc, OPTIMIZE_AXIS);

}

Adjust the Coordinates for the Rotary Axes

It is important to know that the XYZ coordinates provided to the post processor for 3+2 are in the work
plane coordinate system, meaning they are in the XY -plane defined by the work plane. This is fine for
machines that support multi-axis features such as G68.2, CYCLES8QQ, etc., but could be incorrect for
machines that do not support these features.

The section.optimize3DPositionsByMachine function is used to calculate the proper coordinates aligned
with the defined machine configuration for the specified operation.

| section.optimize3DPositionsByMachine(machineConfiguration, abc, optimizeType); |
Adjust the Coordinates for the Machine Configuration for 3+2 Machining

Arguments Description

machineConfiguration | The active machine configuration.

abc The current rotary axis positions passed as a Vector.
optimizeType Optimization type as described in the following table.

Optimize3DPositionsByMachine Arguments

optimizeType Description

OPTIMIZE_NONE The coordinates will be the tool tip position (TCP).

OPTIMIZE_BOTH The coordinates will be adjusted for the table and head rotations.
OPTIMIZE_TABLES | The coordinates will be adjusted for the rotary tables.
OPTIMIZE_HEADS | The coordinates will be adjusted for the rotary heads.

OPTIMIZE_AXIS The coordinates will be adjusted based on the TCP setting for each axis as

defined in the createAxis command.
Optimization Types for 3+2 Operations

Entry Functions 4-122
v4a AUTODESK CAM Post Processor Guide 8/8/23

If TCP positions are output in a 3+2 operation you will have to ensure that the TCP has been enabled for
this operation (G43.4, TRAORI, etc.).

The logic that controls the Work Plane calculation is typically located in the defineWorkPlane section,
but can be in the onSection function for legacy post processors

var abc = new Vector(0, 0, 0);
/I use 5-axis indexing for multi-axis mode
if (1is3D() || machineConfiguration.isMultiAxisConfiguration()) {
I
if (currentSection.isMultiAxis()) {
forceWorkPlane();
cancelTransformation();
}else {
/I use Euler angles for Work Plane
if (useMultiAxisFeatures) {
var eulerXYZ = currentSection.workPlane.getEuler2(EULER_ZXZ_R);
abc = new Vector(eulerXYZ.x, eulerXYZ.y, eulerXYZ.z);
cancelTransformation();
/l use rotary axes angles for Work Plane

}else {

abc = getWorkPlaneMachineABC(currentSection.workPlane, true, true);

}
/l output the work plane
setWorkPlane(abc);

}

} else { // pure 3D

var remaining = currentSection.workPlane;

if (lisSameDirection(remaining.forward, new Vector(0, 0, 1))) {
error(localize("Tool orientation is not supported."));
return abc;

¥

setRotation(remaining);

¥

Work Plane Calculations

You should be aware that the X-axis direction of the Work Plane does affect the Euler angle calculation.
The typical method of defining the Work Plane is to keep the X-axis orientation pointing in the positive
direction as you look down the Z-axis, but on some table/table style machines this will cause the
machining to be on the back side of the table, so in this case you will want the X-axis pointing in the
negative direction.

The setWorkPlane function does the actual output of the Work Plane and can vary from post processor
to post processor, depending on the requirements of the machine control. It will output the calculated

Entry Functions 4-123
v4a AUTODESK CAM Post Processor Guide 8/8/23

Euler angles or rotary axes positions, and in some cases, both. In the following code, G68.2 is used to
define the Work Plane using Euler angles.

function setWorkPlane(abc) {
if (is3D() && 'machineConfiguration.isMultiAxisConfiguration()) {
return;

¥

/I the Work Plane does not change, do not output it
if (!((currentWorkPlaneABC == undefined) ||
abcFormat.areDifferent(abc.x, currentWorkPlaneABC.x) ||
abcFormat.areDifferent(abc.y, currentWorkPlaneABC.y) ||
abcFormat.areDifferent(abc.z, currentWorkPlaneABC.z))) {
return; // no change

¥

/I unlock rotary axes
onCommand(COMMAND_UNLOCK_MULTI_AXIS);

/I retract the tool
if ('retracted) {
writeRetract(2);

¥

// output using Euler angles
if (useMultiAxisFeatures) {
cancelWorkPlane();

I/ preposition the rotary axes
if (machineConfiguration.isMultiAxisConfiguration()) {
var machineABC = abc.isNonZero() ? getWorkPlaneMachineABC(currentSection.workPlane,
false) : abc;
if (useABCPrepositioning || abc.isZero()) {
positionABC(machineABC, true);
}

setCurrentABC(machineABC); // required for machine simulation
}
if (abc.isNonZero()) {
gRotationModal.reset();
writeBlock(gRotationModal.format(68.2), "X" + xyzFormat.format(0), "Y" +
xyzFormat.format(0), "Z" + xyzFormat.format(0), "I" + abcFormat.format(abc.x), "J" +
abcFormat.format(abc.y), "K" + abcFormat.format(abc.z)); // set frame
writeBlock(gFormat.format(53.1)); // turn machine

¥

/[output rotary axis positions

Entry Functions 4-124
v4a AUTODESK CAM Post Processor Guide 8/8/23

}else {
positionABC(abc, true);

¥

Il 'lock rotary axes
onCommand(COMMAND_LOCK_MULTI_AXIS);

¥

Output Work Plane in setWorkPlane Function

4.3.6Initial Position

The initial position of the operation is available to the onSection function and is output here. Tool
length compensation on the control is enabled with the initial position when the tool is changed or if it
has been disabled between operations.

/[force all axes to be output at start of operation
forceAny();

/I get the initial tool position and retract in Z if necessary
var initialPosition = getFramePosition(currentSection.getlnitialPosition());
if ('retracted) {
if (getCurrentPosition().z < initialPosition.z) {
writeBlock(gMotionModal.format(0), zOutput.format(initial Position.z));

ks
ks

// output tool length offset on tool change or if tool has been retracted
if (insertToolCall || retracted) {
var lengthOffset = tool.lengthOffset;
if (lengthOffset > numberOfToolSlots) {
error(localize(*"Length offset out of range."));
return;

¥

gMotionModal.reset();
writeBlock(gPlaneModal.format(17));

Il output XY and then Z with 3-axis or table configuration

if ("machineConfiguration.isHeadConfiguration()) {
writeBlock(

gAbsincModal.format(90),

gMotionModal.format(0), xOutput.format(initialPosition.x), yOutput.format(initialPosition.y)

)i
writeBlock(gMotionModal.format(0), gFormat.format(43), zOutput.format(initialPosition.z),

hFormat.format(lengthOffset));
/[output XYZ with head configuration

Entry Functions 4-125
v4a AUTODESK CAM Post Processor Guide 8/8/23

}else {

writeBlock(
gAbsincModal.format(90),
gMotionModal.format(0),
gFormat.format(43), xOutput.format(initialPosition.x),
yOutput.format(initialPosition.y),
zOutput.format(initialPosition.z), hFormat.format(lengthOffset)
);
}
/l do not activate tool length compensation if already activated
}else {
writeBlock(
gAbsincModal.format(90),
gMotionModal.format(0),
xOutput.format(initial Position.x),
yOutput.format(initial Position.y)
);
}

Output Current Position and Tool Length Compensation

4.4 The section Object

The start of a machining operation defined in CAM is stored in the intermediate file as a separate
section. The section object contains the information used to generate the operation. All defined sections
are accessible to the post processor at any time in the post processor by accessing the section by its ID.
This section provides a description of some of the functions/variables used to access the information
stored in a section. You will find a description of various section functions/variables in other sections of
this manual where they are used.

4.4.1 currentSection

The currentSection variable refers to the active section/operation. It is unspecified if used outside of the
scope of a section, for example in onOpen or onClose. In these functions you will need to access the
section directly using the getSection function.

var firstSection = getSection(0); // access the first section of the program
var lastSection = getSection(getNumberOfSections() — 1) // access the last section of the program
Accessing the First and Last Sections

4.4.2 getSection

| value = getSection(sectionld)

Entry Functions 4-126
v4a AUTODESK CAM Post Processor Guide 8/8/23

Arguments Description
sectionld The ID of the section to return. sectionld can be in the range of 0 through the
number of defined sections (getNumberOfSections).

Returns the section object associated with the specified section ID.

4.4 .3 getNumberOfSections
| value = getNumberOfSections()

Returns the number of sections (operations) defined in the program.

for (var i = 0; i < getNumberOfSections(); ++i) { // loop through all sections
var section = getSection(i);

Looping Through All Defined Sections

4.4.4 getId
| value = section.getld() |

The getld function returns the ID of the provided section. It will be in the range of 0 through the number
of defined sections minus 1 (getNumberOfSections).

/l'loop through sections defined after the current section
for (var i = currentSection.getld() + 1; i < numberOfSections; ++i) {
var section = getSection(i);

Looping Through Following Sections

4.4.5 isToolChangeNeeded
\ value = isToolChangeNeeded([section], arguments) \

Arguments Description

section Specifies the section to test for a tool change. If section is not specified, then
currentSection is assumed.

arguments Specifies one or more of the Tool object variables to use as criteria to
determine if a tool change is needed. This list of criteria can be number,
description, lengthOffset, or any other member of the Tool object.

Returns true if a tool change is required for the specified section. The comparison criteria are passed as
a list of arguments to the function and can be any valid Tool object variable.

| var insertToolCall = isToolChangeNeeded("number", “lengthOffset); |
Determining if a Tool Change is Required for the Current Section Based on the Tool Number and Length Offset

Entry Functions 4-127

4 AUTODESK cAM Post Processor Guide 8/8/23

4.4.6 isNewWorkPlane
\ value = isNewWorkPlane([section])

Arguments Description
section Specifies the section to test for a Work Plane change. If section is not
specified, then currentSection is assumed.

Returns true if the work plane changes for the specified section as compared to the previous section.

\ var newWorkPlane = isNewWorkPlane();
Determining if the Work Plane Changes Between Sections

4.4.7 isNewWorkOffset
| value = isNewWorkOffset([section])

Arguments Description
section Specifies the section to test for a Work Offset change. If section is not
specified, then currentSection is assumed.

Returns true if the work offset changes for the specified section as compared to the previous section.

| var newWorkOffset = isNewWorkOffset();
Determining if the Work Offset Changes Between Sections

4.4.8 isSpindleSpeedDifferent
| value = isSpindleSpeedDifferent([section]) |

Arguments Description
section Specifies the section to test for a change in the spindle speed or spindle mode.
If section is not specified, then currentSection is assumed.

Returns true if the spindle speed or spindle mode (RPM, SFM) differs from the previous section, false if
they are the same.

| if (isSpindleSpeedDifferent () { |
Determining if the Spindle Speed or Mode Changes Between Sections

4.4.9isDrillingCycle

| isDrillingCycle([section,] [checkBoringCycles]) |

Entry Functions 4-128
v4a AUTODESK CAM Post Processor Guide 8/8/23

Arguments Description

section Specifies the section to check for a drilling cycle. If section is not specified,
then currentSection is assumed.

checkBoringCycles | When set to false, boring cycles with a shift value will not be considered a
drilling cycle, otherwise if set to true or not specified shift boring cycles are
considered drilling cycles.

Returns true if the section is a drilling operation, otherwise returns false. Milling cycles are not
considered a drilling cycle.

if (isDrillingCycle()) { // test if the current section is a drilling operation
if (isDrillingCycle(false)) { // do not include shift boring cycles as a drilling operation
Determining if the Section is a Drilling Operation

4.4.10 isTappingCycle
| isTappingCycle([section]) |

Arguments Description
section Specifies the section to check for a tapping cycle. If section is not specified,

then currentSection is assumed.

Returns true if the section is a tapping cycle, otherwise returns false.

\ if (isTappingCycle()) { // test if the current section is a tapping operation
Determining if the Section is a Tapping Operation

4.4.11 isAxialCenterDrilling
\ isAxialCenterDrilling([section,] [checkLiveTool])

Arguments Description

section Specifies the section to check for an axial drilling cycle. If section is not
specified, then currentSection is assumed.

checkLiveTool When set to false, the live tool setting is ignored and will not be used in testing

for an axial center drilling operation, otherwise if set to true or not specified
operations using a live tool will not be considered as an axial center drilling
operation.

Returns true if the section is an axial drilling cycle, otherwise returns false. Axial drilling cycles are
considered drilling operations that are at X0 YO and are usually tested for on lathes.

if (isAxialCenterDrilling()) { // test if the current section is an axial center drilling cycle
if (isAxialCenterDrilling(false)) { // ignore the Live Tool setting

Entry Functions 4-129
v4a AUTODESK CAM Post Processor Guide 8/8/23

Determining if the Section is an Axial Center Drilling Operation

4.4.12 isMillingCycle
| isMillingCycle([section,] [checkBoringCycles]) |

Arguments Description

section Specifies the section to check for a milling cycle. If section is not specified,
then currentSection is assumed.

checkBoringCycles | When set to true, boring cycles with a shift value will be considered a milling
cycle, otherwise if set to false or not specified shift boring cycles are not
considered milling cycles.

Returns true if the section is a milling cycle, otherwise returns false.

if (isMillingCycle()) { // test if the current section is a milling cycle
if (isMillingCycle(true)) { // include shift boring cycles as a drilling operation
Determining if the Section is a Drilling Operation

4.4.13 isProbeOperation
\ value = isProbeOperation([section])

Arguments Description
section Specifies the section to check for a probing operation. If section is not
specified, then currentSection is assumed.

Returns true if the section is a probing operation, otherwise return false. You can also check if the tool
type is set to TOOL_PROBE to determine if probing is active for an operation.

if (isProbeOperation()) { // test if the current section is a probe operation
if (section(i).getTool().type == TOOL_PROBE) { // probing or inspection operation
Determining if the Section is a Probing Operation

4.4.14 isInspectionOperation

\ value = islnspectionOperation([section])

Arguments Description
section Specifies the section to check for an inspection operation. If section is not
specified, then currentSection is assumed.

Returns true if the section is an inspection operation, otherwise return false.

\ if (islnspectionOperation()) { // test if the current section is an inspection operation \
Entry Functions 4-130

4 AUTODESK cAM Post Processor Guide 8/8/23

\ if (section(i).getTool().type == TOOL_PROBE) { // the specified section is a probing operation
Determining if the Section is an Inspection Operation

4.4.15 isDepositionOperation

| value = isDepositionOperation([section])

Arguments Description
section Specifies the section to check for a deposition operation. If section is not
specified, then currentSection is assumed.

Returns true if the section is a deposition operation, otherwise return false.

| if (isDepositionOperation()) { // test if the current section is a deposition operation
Determining if the Section is a Deposition Operation

4.4.16 probeWorkOffset
| value = section.probeWorkOffset |

The probeWorkOffset variable contains the WCS number that is active during the probing operation. It
is the same as the probe-output-work-offset parameter.

\ validate(currentSection.probeWorkOffset <= 6, "Angular Probing supports work offsets 1-6."); \
Validating the Range of the Probe Work Offset

4.4.17 getNextTool
| tool = getNextTool([section,] [firstTool,] [arguments]) |

Arguments Description

section Specifies the section to use as the base tool. The next tool following the tool
used in this section will be returned. If section is not specified, then
currentSection is assumed.

firstTool Returns the first tool if the end of the program is reached when set to true.
Returns undefined if it is not specified or set to false and the end of the
program is reached.

arguments Specifies one or more of the Tool object variables to use as criteria to
determine the next tool. This list of criteria can be number, description,
lengthOffset, or any other member of the Tool object.

The getNextTool function returns the next tool used in the program based on the active tool in the
current section. You can pass number, description, diameter, or any other member of the tool object as
the criteria for determining if the tool is different than the current tool. This function will take any

Entry Functions 4-131
v4a AUTODESK CAM Post Processor Guide 8/8/23

number of text string arguments. If an argument is not passed to this function, then it will choose the
next tool based on the tool number.

var nextTool = getNextTool(true); // get next tool based on tool number, can return the first tool

var nextTool = getNextTool("description™); // get next tool based on tool description
Accessing the Next Tool

4.4.18 getFirstTool
| tool = getFirstTool() |

The getFirstTool function returns the first tool used in the program.

| var firstTool = getFirstTool();

Accessing the First Tool

4.4.19 toolZRange
| zZRange = toolZRange() |

The toolZRange function returns the Z-axis range for the active tool for the current and subsequent
sections that use this tool. It will return undefined if the tool orientation of the active section is not along
the Z-axis.

| var zRange = toolZRange(); |
Calculate the Z-axis Minimum and Maximum for the Active Section(s)

4.4.20 strategy
| value = section.strategy; |

The strategy variable is part of the section object and contains a string that represents the machining
strategy used for the section. It contains the same value as the operation-strategy parameter.

} else { // do not output smoothing for the following operations
smoothing.isAllowed = !(currentSection.strategy == "'drill""));

¥

Checking for a Drill Operation

4.4.21 checkGroup
| value = section.checkGroup(strategy-list)

Arguments Description
strategy-list A list of machining strategy groups to check, separated by commas.

Entry Functions 4-132

4 AUTODESK cAM Post Processor Guide 8/8/23

The checkGroup function returns true if the section machining strategy belongs to all of the strategy

groups specified in the strategy-list. The valid strategy groups are listed in the following table. Each of
these variables should be prefixed with STRATEGY _, for example STRATEGY_2D.

2D 3D ADDITIVE CHECKSURFACE
FINISHING HOLEMAKING INSPECTION JET

DRILLING MILLING MULTIAXIS PROBING

ROTARY ROUGHING SAMPLING SECONDARYSPINDLE
SURFACE THREAD TURNING

Strategy Groups (Prefixed with STRATEGY)

} else { // do not output smoothing for the following operations
smoothing.isAllowed = !(currentSection.checkGroup(STRATEGY_DRILLING));
}

Checking for a Drill Operation

4.5 onSectionEnd
| function onSectionEnd() {

The onSectionEnd function can be used to define the end of an operation, but in most post processors
this is handled in the onSection function. The reason for this is that different output will be generated
depending on if there is a tool change, WCS change, or Work Plane change and this logic is handled in
the onSection function (see the insertToolCall variable), though it could be handled in the onSectionEnd
function if desired by referencing the getNextSection and isLastSection functions.

var insertToolCall = isLastSection() ||

getNextSection().getForceToolChange && getNextSection().getForceToolChange() ||
(getNextSection().getTool().number != tool.number);

var retracted = false; // specifies that the tool has been retracted to the safe plane
var newWorkOffset = isLastSection() ||

(currentSection.workOffset = getNextSection().workOffset); // work offset changes
var newWorkPlane = isLastSection() ||

lisSameDirection(currentSection.getGlobalFinal ToolAxis(),
getNextSection().getGloballnitial ToolAxis());

if (insertToolCall || newWorkOffset || newWorkPlane) {
/1 stop spindle before retract during tool change
if (insertToolCall) {
onCommand(COMMAND_STOP_SPINDLE);
}

Entry Functions 4-133
v4a AUTODESK CAM Post Processor Guide 8/8/23

// retract to safe plane
retracted = true;
writeBlock(gFormat.format(28), gAbsincModal.format(91), "Z" + xyzFormat.format(0)); // retract
writeBlock(gAbsincModal.format(90));
zOutput.reset();
if (insertToolCall) {
onCommand(COMMAND_COOLANT_OFF);

if (getProperty("optionalStop™)) {
onCommand(COMMAND_OPTIONAL_STOP);

¥
¥
¥

Ending the Operation in onSectionEnd

You will need to remove the similar code from the onSection function and probably the onClose
function, which will duplicate the session ending code if left intact.

One reason for ending the operation in the onSectionEnd function is if a Manual NC command is used
between operations. The Manual NC command will be processed prior to the onSection function and if
the previous operation is terminated in onSection, then the Manual NC command will be acted upon
prior to ending the previous operation.

The onSectionEnd function is pretty basic in most posts and will reset codes that may have been
changed in the operation and possibly some variables that are operation specific.

function onSectionEnd() {
writeBlock(gPlaneModal.format(17));
forceAny();

¥

Basic onSectionEnd Function

4.6 onClose
| function onClose() { |

The onClose function is called at the end of the last operation, after onSectionEnd. It is used to define
the end of an operation, if not handled in onSectionEnd, and to output the end-of-program codes.

function onClose() {
/I end previous operation
writeln("™);
optionalSection = false;

onCommand(COMMAND_COOLANT_OFF);

Entry Functions 4-134
v4a AUTODESK CAM Post Processor Guide 8/8/23

writeRetract(Z); // retract
disableLengthCompensation(true);

setSmoothing(false);

zOutput.reset();

setWorkPlane(new Vector(0, 0, 0)); // reset working plane
writeRetract(X, Y); // return to home

/I output end-of-program codes
onlmpliedCommand(COMMAND_END);
onlmpliedCommand(COMMAND_STOP_SPINDLE);
writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off
writeln("%");

Basic onClose Function

4.7 onTerminate

| function onTerminate() {

The onTerminate function is called at the end of post processing, after onClose. It is called after all
output to the NC file is finished and the NC file is closed. It may be used to rename the output file(s)
after processing has finished, to automatically create a setup sheet, or to run another program against the
output NC file.

function onTerminate() {
var outputPath = getOutputPath();
var programFilename = FileSystem.getFilename(outputPath);
var programSize = FileSystem.getFileSize(outputPath);
var postPath = findFile("setup-sheet-excel-2007.cps");
var intermediatePath = getintermediatePath();
var a = "--property unit " + ((unit==IN) ? "0" : "1"); // use 0 for inch and 1 for mm

if (programName) {
a +=" --property programName \""" + programName + "\"";
}
if (programComment) {
a +=" --property programComment \""" + programComment + "\"";
}
a +=" --property programFilename \"" + programFilename + "'\""";
a +=" --property programSize \'"" + programsSize + "\'"";
a+=" --noeditor --log temp.log \"" + postPath + "\" \"" + intermediatePath + "\" \"" +

FileSystem.replaceExtension(outputPath, "xIsx") + "\"",;
execute(getPostProcessorPath(), a, false, "");
executeNoWait("excel”, "\"" + FileSystem.replaceExtension(outputPath, "xIsx") + "\"", false, ");

Create and Display Setup Sheet from onTerminate

Entry Functions 4-135
v4a AUTODESK CAM Post Processor Guide 8/8/23

4 .8 onCommand

\ function onCommand(command) {

Arguments Description

command

Command to process.

The onCommand function can be called by a Manual NC command, directly from HSM, or from the

post processor.

Command Description
COMMAND_ACTIVATE_SPEED_FEED_SYNCHRONIZATION Activate threading mode
COMMAND_ALARM Alarm

COMMAND_ALERT Alert

COMMAND_BREAK_CONTROL

Tool break control

COMMAND_CALIBRATE

Run calibration cycle

COMMAN_CHANGE_PALLET

Change pallet

COMMAND_CLEAN

Run cleaning cycle

COMMAND_CLOSE_DOOR

Close primary door

COMMAND_COOLANT_OFF

Coolant off (MQ9)

COMMAND_COOLANT_ON

Coolant on (M08)

COMMAND_DEACTIVATE_SPEED_FEED_SYNCHRONIZATION

Deactivate threading mode

COMMAND_END

Program end (M02)

COMMAND_EXACT_STOP

Exact stop

COMMAND_LOAD_TOOL

Tool change (M06)

COMMAND_LOCK_MULTI_AXIS

Locks the rotary axes

COMMAND_MAIN_CHUCK_CLOSE

Close main chuck

COMMAND_MAIN_CHUCK_OPEN

Open main chuck

COMMAND_OPEN_DOOR

Open primary door

COMMAND_OPTIONAL_STOP

Optional program stop (M01)

COMMAND_ORIENTATE_SPINDLE

Orientate spindle (M19)

COMMAND_POWER_OFF

Power off

COMMAND_POWER_ON

Power on

COMMAND_SECONDARY_CHUCK_CLOSE

Close secondary chuck

COMMAND_SECONDARY_CHUCK_OPEN

Open secondary chuck

COMMAND_SECONDARY_SPINDLE_SYNCHRONIZATION_ACTIVATE

Activate spindle synchronization

COMMAND_SECONDARY_SPINDLE_SYNCHRONIZATION_DEACTIVATE

Deactivate spindle synchronization

COMMAND_SPINDLE_CLOCKWISE

Clockwise spindle direction (M03)

COMMAND_SPINDLE_COUNTERCLOCKWISE

Counter-clockwise spindle direction
(M04)

COMMAND_START_CHIP_TRANSPORT

Start chip conveyor

COMMAND_START_SPINDLE

Start spindle in previous direction

COMMAND_STOP

Program stop (MO0O0)

COMMAND_STOP_CHIP_TRANSPORT

Stop chip conveyor

COMMAND_STOP_SPINDLE

Stop spindle (M05)

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-136

Command Description
COMMAND_TOOL_MEASURE Measure tool
COMMAND_UNLOCK_MULTI_AXIS Unlocks the rotary axes
COMMAND_VERIFY Verify path/tool/machine integrity

Valid Commands

The Manual NC commands that call onCommand are described in the Manual NC Commands chapter.
Internal calls to onCommand are usually generated when expanding a cycle. The post processor itself
will call onCommand directly to perform simple functions, such as outputting a program stop, cancelling
coolant, opening the main door, turning on the chip conveyor, etc.

/I stop spindle and cancel coolant before retract during tool change

if (insertToolCall && lisFirstSection()) {
onCommand(COMMAND_COOLANT_OFF);
onCommand(COMMAND_STOP_SPINDLE);

¥

Calling onCommand Directly from Post Processor

The onlmpliedCommand function changes the state of certain settings in the post engine without calling
onCommand and outputting the associated codes with the command. The state of certain parameters is
important when the post processor engine expands cycles.

onlmpliedCommand(COMMAND_END);
onlmpliedCommand(COMMAND_STOP_SPINDLE);
onlmpliedCommand(COMMAND_COOLANT_OFF);

writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off
Using onlmpliedCommand

4 .9 onComment

\ function onComment(message) {

Arguments Description
message Text of comment to output.

The onComment function is called when the Manual NC command Comment is issued. It will format
and output the text of the comment to the NC file.

Entry Functions 4-137
v4a AUTODESK CAM Post Processor Guide 8/8/23

@ MANUALNC : MANUAL NC1

Pazzes

¥ Manual NC

Manual Type Comment -

Comment This iz a comment

(i] Ok Cancel

"The Comment Manual NC Command

There are two other functions that are used to format and output comments, formatComment and
writeComment. These comment functions are standard in nature and do not typically have to be
modified, though the permittedCommentChars variable, defined at the top of the post, is used to define
the characters that are allowed in a comment and may have to be changed to match the control. The
formatComment function will remove any characters in the comment that are not specified in this
variable. Lowercase letters will be converted to uppercase by the formatComment function. If you want
to support lowercase letters, then they would have to be added to the permittedCommentChars variable
and the formatComment function would need to have the conversion to uppercase removed.

| var permittedCommentChars = " ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,= -"; |
Defining the Permitted Characters for Comments

[** Format a comment */
function formatComment(text) {

return "(" + filterText(String(text).toUpperCase(), permittedCommentChars).replace(/[\(\)]/g, ") +
)
¥

[** Output a comment */
function writeComment(text) {
writeln(formatComment(text));

¥

[** Process the Manual NC Comment command */
function onComment(message) {
var comments = String(message).split(";"); // allow multiple lines of comments per command
for (comment in comments) {
writeComment(comments[comment]);
}
}

The Comment Functions

4.10 onDwell
| function onDwell(seconds) { |

Entry Functions 4-138
v4a AUTODESK CAM Post Processor Guide 8/8/23

Arguments Description
seconds Dwell time in seconds.

The onDwell function can be called by a Manual NC command, directly from HSM, or from the post
processor. The Manual NC command that calls onDwell is described in the Manual NC Commands
chapter. Internal calls to onDwell are usually generated when expanding a cycle. The post processor
itself will call onDwell directly to output a dwell block.

function onDwell(seconds) {
if (seconds > 99999.999) {
warning(localize("Dwelling time is out of range."));

}
milliseconds = clamp(1, seconds * 1000, 99999999);
writeBlock(gFeedModeModal.format(94), gFormat.format(4), "P" +
milliFormat.format(milliseconds));
}

Output the Dwell Time in Milliseconds

onCommand(COMMAND_COOLANT_ON);

onDwell(1.0); // dwell 1 second after turning coolant on
Calling onDwell Directly from Post Processor

4.11 onParameter

\ function onParameter(name, value) {

Arguments Description
name Parameter name.
value Value stored in the parameter.

Almost all parameters used for creating a machining operation in HSM are passed to the post processor.
Common parameters are available using built in post processor variables (currentSection, tool, cycle,
etc.) as well as being made available as parameters. Other parameters are passed to the onParameter
function.

74: onParameter(‘operation:context’, ‘operation’)

75: onParameter(‘operation:strategy’, 'drill")

76: onParameter(‘operation:operation_description’, 'Drill)

77: onParameter(‘operation:tool_type', 'tap right hand’)

78: onParameter(‘operation:undercut’, 0)

79: onParameter(‘operation:tool_isTurning’, 0)

80: onParameter(‘operation:tool_isMill’, 0)

81: onParameter(‘operation:tool_isDrill’, 1)

82: onParameter(‘operation:tool taperedType', 'tapered_bull nose’)

Entry Functions 4-139
v4a AUTODESK CAM Post Processor Guide 8/8/23

83: onParameter(‘operation:tool_unit', 'inches’)
84: onParameter(‘operation:tool_number’, 4)
85: onParameter(‘operation:tool_diameterOffset’, 4)
86: onParameter(‘operation:tool_lengthOffset', 4)
Sample Parameters Passed to the onParameter Function from Dump Post Processor

The name of the parameter along with its value is passed to the onParameter function. Some Manual
NC commands will call the onParameter function, these are described in the Manual NC Commands
chapter. You can see how to run and analyze the output from the dump.cps post processor in the
Debugging chapter.

function onParameter(name, value) {
switch (name) {
case "job-notes":
if (firstNote) {
writeNotes(value, true);
}
firstNote = false;
break;

¥
¥

Sample onParameter Function

4.11.1 getParameter Function

\ value = getParameter(name [,default])

Arguments Description

name Parameter name.

default The value to return if the requested parameter is not defined. If a default value
is not specified and the parameter is not defined, then undefined is returned.

You can retrieve operation parameters at any place in the post processor by calling the getParameter
function. Operation parameters are defined as parameters that are redefined for each machining
operation. There is a chance that a parameter does not exist so it is recommended that you check for the
parameter either by specifying a default value in the getParameter call or by using the hasParameter
function.

var comment = getParameter("operation-comment”, ""); // get the parameter value
if (comment) {
writeComment(comment);

¥

Verify a Parameter Exists Using the getParameter Function

| if (hasParameter(“operation-comment")) { // verify the parameter exists |
Entry Functions 4-140

4 AUTODESK cAM Post Processor Guide 8/8/23

var comment = getParameter("operation-comment"); // get the parameter value
if (comment) {
writeComment(comment);

¥
¥

Verify a Parameter Exists Using the hasParameter Function

When scanning through the operations in the intermediate file it is possible to access the parameters for
that operation by using the section variant of the hasParameter and getParameter functions.

/[write out all operation comments
writeln("List of Operations:");
for (var i = 0; i < getNumberOfSections(); ++i) {
var section = getSection(i);
var comment = section.getParameter("operation-comment”, "");
if (comment) {
writeln(" " + comment);

}

writeln(*™");

Using Section Variant of getParameter

4.11.2 getGlobalParameter Function

\ value = getGlobalParameter(name [,default]))

Arguments Description

name Parameter name.

default The value to return if the requested parameter is not defined. If a default value
is not specified and the parameter is not defined, then undefined is returned.

Some parameters are defined at the start of the intermediate file prior to the first operation. These
parameters are considered global and are accessed using the hasGlobalParameter and
getGlobalParameter functions. The same rules that apply to the operation parameters apply to global
parameters.

-1: onOpen()

: onParameter('product-id’, 'fusion360")

: onParameter(‘generated-by’, 'Fusion 360 CAM 2.0.3803")

: onParameter('generated-at’, 'Saturday, March 24, 2018 4:34:36 PM")
: onParameter(*hostname’, 'host’)

: onParameter(‘username’, ‘user’)

: onParameter(‘document-path’, "Water-Laser-Plasma v2')

: onParameter(‘leads-supported’, 1)

: onParameter(‘job-description’, 'Laser")

~NoO o1k, wWwN PO

Entry Functions 4-141
v4a AUTODESK CAM Post Processor Guide 8/8/23

9: onParameter('stock’, '((0, 0, -5), (300, 200, 0)))
11: onParameter('stock-lower-x', Q)
13: onParameter('stock-lower-y', 0)
15: onParameter(‘stock-lower-z', -5)
17: onParameter('stock-upper-x', 300)
19: onParameter(‘stock-upper-y', 200)
21: onParameter('stock-upper-z', 0)
23: onParameter('part-lower-x', 0)

25: onParameter('part-lower-y', 0)

27: onParameter('part-lower-z', -5)
29: onParameter(‘part-upper-x', 300)
31: onParameter('part-upper-y', 200)
33: onParameter(‘part-upper-z', 0)

35: onParameter('notes’, ")

Sample Global Variables

When processing multiple setups at the same time some of the global parameters will change from one
setup to the next. The getGlobalParameter function though will always reference the parameters of the
first setup, so if you want to access the parameters of the active setup then you will need to use the
onParameter function rather than the getGlobalParameter function.

function onParameter(name, value) {
if (name == "job-description™) {
setupName = value;

¥

¥

Using onParameter to Store the Active Setup Name

4.12 onPassThrough
| Function onPassThrough (value)

Arguments Description
value Text to be output to the NC file.

The onPassThrough function is called by the Pass through Manual NC command and is used to pass a
text string directly to the NC file without any processing by the post processor. This function is
described in the Manual NC Commands chapter.

4.13 onSpindleSpeed
| function onSpindleSpeed(speed) {

Arguments Description
spindleSpeed The new spindle speed in RPM.

Entry Functions 4-142
v4a AUTODESK CAM Post Processor Guide 8/8/23

The onSpindleSpeed function is used to output changes in the spindle speed during an operation,
typically from the post processor engine when expanding a cycle.

function onSpindleSpeed(spindleSpeed) {
writeBlock(sOutput.format(spindleSpeed));

¥

Sample onSpindleSpeed Function

4.14 onOrientateSpindle

\ function onOrientateSpindle(angle) {

Arguments Description
angle Spindle orientation angle in radians.

The onOrientateSpindle function is not typically called. When a cycle that orientates the spindle is
expanded the onCommand(COMMAND_ORIENTATE_SPINDLE) function is called.

4 .15 onRadiusCompensation

| function onRadiusCompensation() { |

The onRadiusCompensation function is called when the radius (cutter) compensation mode changes. It
will typically set the pending compensation mode, which will be handled in the motion functions
(onRapid, onLinear, onCircular, etc.). Radius compensation, when enabled in an operation, will be
enabled on the move approaching the part and disabled after moving off the part.

The state of radius compensation is stored in the global radiusCompensation variable and is not passed
to the onRadiusCompensation function. Radius compensation is defined when creating the machining
operation in HSM (1). The Sideways Compensation (2) setting determines the side of the part that the
tool will be on when cutting. It is based on the forward direction of the tool during the cutting operation.

Entry Functions 4-143
v4a AUTODESK CAM Post Processor Guide 8/8/23

@ 20 CONTOUR : 2D-CONTOUR WITH COMPENS

¥ 3O A
¥ Pazzes
Tolerance 0.000393701 in

Sideways Compensi...

Compensation Type

Compenzsation Radiu:. ..

Make Sharp Corners

Minimum Cutting Rad...

Multiple Finizhing Pas...

Cimimb Camdemta

Left (climb miling) * @ @

In computer
@ In cantrol

Wear

Inwerse wear

Off

T TFTTTrTeT

<0

Enabling/DisaquinglRadius Compensation

Compensation Type

Description

In computer

The tool is offset from the part based on the tool diameter. The center
line of the offset tool is sent to the post processor and the radius
compensation mode is OFF (G40).

In control

The tool is not offset from the part. The centerline of the tool as if it is
on the part is sent to the post processor and the radius compensation
mode is determined by the Sideways Compensation setting (G41/G42).
The control will perform the entire offsetting of the tool.

Wear

The tool is offset from the part based on the tool diameter. The center
line of the offset tool is sent to the post processor and the radius
compensation mode is determined by the Sideways Compensation
setting (G41/G42). The control will compensate for tool wear.

Inverse wear

(G42/G41).

Same as Wear, but the opposite compensation direction will be used

Off

The tool is not offset from the part. The centerline of the tool as if it is
on the part is sent to the post processor and the radius compensation
mode will be disabled (G40).

Radius Compensation Modes

¥

var pendingRadiusCompensation = -1;

function onRadiusCompensation() {
pendingRadiusCompensation = radiusCompensation;

4 .16 onMovement

Sample onRadiusCompensation Function

| function onMovement(movement) {

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-144

Arguments Description
movement Movement type for the following motion(s).

onMovement is called whenever the movement type changes. It is used to tell the post when there is a
positioning, entry, exit, or cutting type move. There is also a movement global variable that contains the
movement setting. This variable can be referenced directly in other functions, such as onLinear, to
access the movement type without defining the onMovement function.

The supported movement types are listed in the following table.

Movement Type Description

MOVEMENT_CUTTING Standard cutting motion.

MOVEMENT_EXTENDED Extended movement type. Not common.

MOVEMENT FINISH CUTTING Finish cutting motion.

MOVEMENT_HIGH_FEED Movement at high feedrate. Not typically used. Rapid moves

output using a linear move at the high feedrate will use the
MOVEMENT_RAPID type.

MOVEMENT _LEAD_IN Lead-in motion.

MOVEMENT LEAD OUT Lead-out motion.

MOVEMENT _LINK_DIRECT Direction (non-cutting) linking move.
MOVEMENT LINK_TRANSITION | Transition (cutting) linking move.
MOVEMENT_PLUNGE Plunging move.

MOVEMENT_ PREDRILL Predrilling motion.

MOVEMENT RAMP Ramping entry motion.
MOVEMENT RAMP_HELIX Helical ramping motion.

MOVEMENT_RAMP_PROFILE Profile ramping motion.
MOVEMENT_RAMP_ZIG_ZAG Zig-Zag ramping motion.
MOVEMENT_RAPID Rapid movement.

MOVEMENT_REDUCED Reduced cutting motion.
Movement Types

Movement types are used in defining parametric feedrates in some milling posts and for removing all
non-cutting moves for waterjet/plasma/laser machines that require only the cutting profile.

4.17 onRapid
| function onRapid(x, vy, 2){

Arguments Description
X, Y, Z The tool position.

The onRapid function handles rapid positioning moves (G00) while in 3-axis mode. The tool position is
passed as the _x, _y, _z arguments. The format of the onRapid function is pretty basic, it will handle a
change in radius compensation, may determine if the rapid moves should be output at a high feedrate

Entry Functions 4-145
v4a AUTODESK CAM Post Processor Guide 8/8/23

(due to the machine making dogleg moves while in rapid mode), and output the rapid move to the NC
file.

If the High feedrate mapping property is set to Always use high feed, then the onLinear function will be
called with the high feedrate passed in as the feedrate and the onRapid function will not be called.

Property Value

(Built-in) Allow helical moves s

(Built-in) High feedrate mapping Imways use hi v]

(Built-in) High feedrate Preserve rapid movement

(Built-in) Maximum drcular radius Preserve single axis rapid movement

s - Preserve axial and radial rapid movement
[t-im) M hord length
(Built-in) Minimum chord leng Always use high feed

(Built-in) Minimum crcular radius
(Built-in) Tolerance 0.001

Using High Feedrates for Positioning Moves

function onRapid(_x, _y, 2){
/[format tool position for output
var X = xOutput.format(_x);
var y = yOutput.format(_y);
var z = zOutput.format(_z);

/['ignore if tool does not move
if(x]lyll2){
if (pendingRadiusCompensation >= 0) { // handle radius compensation
error(localize("Radius compensation mode cannot be changed at rapid traversal."));

return;

¥

// output move at high feedrate if movement in more than one axis
if ("getProperty("useG0") && ((x?1:0)+(y?1:0)+(z?1:0)>1)){
writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), X, y, z,
getFeed(highFeedrate));

// output move in rapid mode

}else {
writeBlock(gMotionModal.format(0), x, y, z);
forceFeed();

¥
¥

¥

Sample onRapid Function
Entry Functions 4-146

va AUTODESK cAM Post Processor Guide 8/8/23

4.18 invokeOnRapid
| invokeOnRapid(x, Y, z);

Arguments Description
X, Y, Z The tool position.

It is possible that the post processor will need to generate rapid positioning moves during the processing
of the intermediate file. An example would be creating your own expanded drilling cycle. Instead of
calling onRapid with the post generated moves, it is recommended that invokeOnRapid be called
instead. This will ensure that the post engine is notified of the move and the current position is set.
invokeOnRapid will then call onRapid with the provided arguments.

4.19 onLinear

| function onLinear(x, y, z, feed) {

Arguments Description
X, VY, Z The tool position.
feed The feedrate.

The onLinear function handles linear moves (G01) at a feedrate while in 3-axis mode. The tool position
is passed as the _x, _y, z arguments. The format of the onLinear function is pretty basic, it will handle
a change in radius compensation and outputs the linear move to the NC file.

function onLinear(_x, _y, z, feed) {
/I force move when radius compensation changes
if (pendingRadiusCompensation >= 0) {
xOutput.reset();
yOutput.reset();

¥

/[format tool position for output
var x = xOutput.format(_x);

var y = yOutput.format(_y);

var z = zOutput.format(_z);

var f = getFeed(feed);

/[ignore if tool does not move
if(xllyllz){
// handle radius compensation changes
if (pendingRadiusCompensation >=0) {
pendingRadiusCompensation = -1;
var d = tool.diameterOffset;

Entry Functions 4-147
v4a AUTODESK CAM Post Processor Guide 8/8/23

if (d>200) {
warning(localize("The diameter offset exceeds the maximum value."));

writeBlock(gPlaneModal.format(17));
switch (radiusCompensation) {
case RADIUS_COMPENSATION_LEFT:
dOutput.reset();
writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(41), x, y, z,
dOutput.format(d), f);
break;
case RADIUS_COMPENSATION_RIGHT:
dOutput.reset();
writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(42), x, y, z,
dOutput.format(d), f);
break;
default:
writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, y, z,
f);
}

// output non-compensation change move at feedrate

}else {
writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), X, y, z, f);

¥

/l no movement, but feedrate changes
}elseif (f) {
if (getNextRecord().isMotion()) { // try not to output feed without motion
forceFeed(); // force feed on next line

}else {
writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), f);
}
}

¥

Sample onLinear Function

4 .20 invokeOnLinear

| invokeOnLinear(x, y, z, feed);

Arguments Description
XY, Z The tool position.
feed The feedrate.

It is possible that the post processor will need to generate cutting moves during the processing of the
intermediate file. An example would be creating your own expanded drilling cycle. Instead of calling
onLinear with the post generated moves, it is recommended that invokeOnLinear be called instead. This

Entry Functions 4-148
v4a AUTODESK CAM Post Processor Guide 8/8/23

will ensure that the post engine is notified of the move and the current position is set. invokeOnLinear
will then call onLinear with the provided arguments.

4.21 onRapid5D

| function onRapid5D(x, y, 7, a, b, ¢){

Arguments Description

X, Y, Z The tool position.

_a, b, ¢ The rotary angles if a machine configuration has been defined, otherwise the
tool axis vector is passed.

The onRapid5D function handles rapid positioning moves (G00) in multi-axis operations. The tool
position is passed as the _x, y, z arguments and the rotary angles as the _a, b, carguments. Ifa
machine configuration has not been defined, then _a, b, _c contains the tool axis vector. The
onRapid5D function will be called for all rapid moves in a multi-axis operation, even if the move is only
a 3-axis linear move without rotary movement.

Like the onRapid function, the onRapid5D function handles a change in radius compensation, may
determine if the rapid moves should be output at a high feedrate (due to the machine making dogleg
moves while in rapid mode), and outputs the rapid move to the NC file.

function onRapid5D(_X, vy, z,_a, b, ¢){
I/l enable this code if machine does not accept 1JK tool axis vector input
if (false) {
if ("currentSection.isOptimizedForMachine()) {
error(localize("This post configuration has not been customized for 5-axis toolpath."));
return;
}
}

/I handle radius compensation changes

if (pendingRadiusCompensation >= 0) {
error(localize("Radius compensation mode cannot be changed at rapid traversal."));
return;

}

/I Machine Configuration has been defined, output rotary angles with move
if (currentSection.isOptimizedForMachine()) {

var x = xOutput.format(_x);

var y = yOutput.format(_y);

var z = zOutput.format(_z);

var a = aOutput.format(_a);

var b = bOutput.format(_b);

var ¢ = cOutput.format(_c);

Entry Functions 4-149
v4a AUTODESK CAM Post Processor Guide 8/8/23

writeBlock(gMotionModal.format(0), X, vy, z, a, b, ¢);
/l Machine Configuration has not been defined, output tool axis with move
}else {

forceXYZ();

var X = xOutput.format(_x);

var y = yOutput.format(_y);

var z = zOutput.format(_z);

var i = ijkFormat.format(_a);

var j = ijkFormat.format(_b);

var k = ijkFormat.format(_c);

writeBlock(gMotionModal.format(0), x, y, z, "I" +1i, "J" + J, "K" + K);
}
forceFeed();

¥

Sample onRapid5D Function

Please refer to the Multi-Axis Post Processors chapter for a detailed explanation on supporting a multi-
axis machine.

4.22 invokeOnRapid5D
| invokeOnRapid5D(x, y, z, a, b, ¢);

Arguments Description

XY, Z The tool position.

a,b,c The rotary angles if a machine configuration has been defined, otherwise the
tool axis vector is passed.

It is possible that the post processor will need to generate multi-axis rapid positioning moves during the
processing of the intermediate file. An example would be when handling the retract/reconfigure
procedure. Instead of calling onRapid5D with the post generated moves, it is recommended that
invokeOnRapid5D be called instead. This will ensure that the post engine is notified of the move and
the current position is set. invokeOnRapid5D will then call onRapid5D with the provided arguments.

4 .23 onlLinear5D
\ function onLinear5D(_x, 'y, z, a, b, c, feed, feedMode) {

Arguments Description

X, Y, Z The tool position.

_a, b, ¢ The rotary angles if a machine configuration has been defined, otherwise the
tool axis vector is passed.

feed The feedrate value calculated for the multi-axis feedrate mode.

feedMode The active multi-axis feedrate mode It can be FEED_FPM,
FEED INVERSE TIME, or FEED DPM.

Entry Functions 4-150
v4a AUTODESK CAM Post Processor Guide 8/8/23

The onLinear5D function handles cutting moves (G01) in multi-axis operations. The tool position is
passed as the _x, _y, z arguments and the rotary angles as the _a, b, _c arguments. If a machine
configuration has not been defined, then _a, b, _c contains the tool axis vector. The onLinear5D
function will be called for all cutting moves in a multi-axis operation, even if the move is only a 3-axis
linear move without rotary movement.

It is important to know that the feedMode argument will not be present if multi-axis feedrates are not
defined either in an external Machine Configuration or within the post processor using the
setMultiAxisFeedrate function. The feed value will always be passed as the programmed feedrate in this
case.

Like the onLinear function, the onLinear5D function handles a change in radius compensation, and
outputs the cutting move to the NC file.

function onLinearsD(_x, _y, z, a, b, _c, feed, feedMode) {
I/l enable this code if machine does not accept 1JK tool axis vector input
if (false) {
if ("currentSection.isOptimizedForMachine()) {
error(localize("This post configuration has not been customized for 5-axis toolpath."));
return;

¥
ks

// handle radius compensation changes

if (pendingRadiusCompensation >= 0) {
error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));
return;

¥

Il Machine Configuration has been defined, output rotary angles with move
if (currentSection.isOptimizedForMachine()) {

var x = xOutput.format(_x);

var y = yOutput.format(_y);

var z = zOutput.format(_z);

var a = aOutput.format(_a);

var b = bOutput.format(_b);

var ¢ = cOutput.format(_c);

Il get feedrate number
if (feedMode == FEED_INVERSE_TIME) {
feedOutput.reset();

var fMode = feedMode == FEED_INVERSE_TIME ? 93 : 94;
var f = feedMode == FEED_INVERSE_TIME ? inverseTimeOutput.format(feed) :
feedOutput.format(feed);

Entry Functions 4-151
v4a AUTODESK CAM Post Processor Guide 8/8/23

I/ ignore if tool does not move
if(xllyllzllallbllc){
writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), X, y, z, a, b, c, f);
}else if (f) {
if (getNextRecord().isMotion()) { // try not to output feed without motion
forceFeed(); // force feed on next line
}else {
writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), f);
}
}

Il Machine Configuration has not been defined, output tool axis with move
}else {

forceXYZ();

var X = xOutput.format(_x);

var y = yOutput.format(_y);

var z = zOutput.format(_z);

var i = ijkFormat.format(_a);

var j = ijkFormat.format(_b);

var k = ijkFormat.format(_c);

var f = getFeed(feed);

I/ ignore if tool does not move
fclyllzI[illilk){
writeBlock(gMotionModal.format(1), x, y, z, "I" + i, "J" + j, "K" + k, f);
}elseif (f) {
if (getNextRecord().isMotion()) { // try not to output feed without motion
forceFeed(); // force feed on next line
}else {
writeBlock(gMotionModal.format(1), f);
}
}
}
}

Sample onLinear5D Function

Please refer to the Multi-Axis Post Processors chapter for a detailed explanation on supporting a multi-
axis machine.

4 .24 invokeOnLinear5D

| invokeOnLinear5D(x, , z, a, b, c, feed);

Arguments Description
XY, Z The tool position.

Entry Functions 4-152
v4a AUTODESK CAM Post Processor Guide 8/8/23

Arguments Description

a,b,c The rotary angles if a machine configuration has been defined, otherwise the
tool axis vector is passed.

feed The feedrate.

It is possible that the post processor will need to generate multi-axis cutting moves during the processing
of the intermediate file. An example would be when handling the retract/reconfigure procedure. Instead
of calling onLinear5D with the post generated moves, it is recommended that invokeOnLinear5D be
called instead. This will ensure that the post engine is notified of the move and the current position is
set. invokeOnLinear5D will then call onLinear5D with the provided arguments.

The post engine will calculate the proper feedrate value and mode prior to calling onLinear5D.

4 .25 onCircular

\ function onCircular(clockwise, cx, cy, ¢z, X, y, z, feed) {

Argument Description

clockwise Set to true if the circular direction is in the clockwise direction, false if
counter-clockwise.

CX, Cy, CZ Center coordinates of circle.

XY, 2 Final point on circle

feed The feedrate.

The onCircular function is called whenever there is circular, helical, or spiral motion. The circular
move can be in any of the 3 standard planes, XY-plane, YZ-plane, or ZX-plane, it is up to the
onCircular function to determine which types of circular are valid for the machine and to correctly
format the output.

The structure of the onCircular function in most posts uses the following layout.

1. Test for radius compensation. Most controls do not allow radius compensation to be started on a
circular move.

2. Full circle output.

3. Center point (1JK) output.

4. Radius output.

Each of the different styles of output will individually handle the output of circular interpolation in each
of the planes and possibly 3-D circular interpolation if it is supported.

if (pendingRadiusCompensation >= 0) { // Disallow radius compensation
error(localize("Radius compensation cannot be activated/deactivated for a circular move."));
return;

¥

Entry Functions 4-153
v4a AUTODESK CAM Post Processor Guide 8/8/23

if (isFullCircle()) { // Full 360 degree circles
if (getProperty("useRadius") || isHelical()) { // radius mode does not support full arcs
linearize(tolerance);
return;

¥

} else if ("getProperty("useRadius™)) { // Incremental center point output
switch (getCircularPlane()) {
case PLANE_XY:

} else { // Use radius mode
var r = getCircularRadius();
if (toDeg(getCircularSweep()) > (180 + 1e-9)) {
r=-r; // allow up to <360 deg arcs

¥

Standard onCircular Structure

switch (getCircularPlane()) {
case PLANE_XY:
writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2 : 3),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), getFeed(feed));
break;
case PLANE_ZX:
writeBlock(gPlaneModal.format(18), gMotionModal.format(clockwise ? 2 : 3),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), getFeed(feed));
break;
case PLANE _YZ:
writeBlock(gPlaneModal.format(19), gMotionModal.format(clockwise ? 2 : 3),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), getFeed(feed));
break;
default: // circular record is not in major plane
linearize(tolerance);

¥

Circular Output Based on Plane

4.25.1 Circular Interpolation Settings

There are settings that affect how circular interpolation is handled in the post engine, basically telling
the post engine when to call onCircular or when to linearize the points by calling onLinear multiple
times instead. The following table describes the circular interpolation settings.

Entry Functions 4-154
v4a AUTODESK CAM Post Processor Guide 8/8/23

Setting Description

allowedCircularPlanes Defines the standard planes that circular interpolation is allowed in,
PLANE_XY, PLANE_YZ, PLANE_ZX. It can be set to undefined to
allow circular interpolation in all three planes, 0 to disable circular
interpolation, or a bit mask of PLANE_XY, PLANE_YZ, and/or
PLANE_YZ to allow only certain planes.

allowHelicalMoves Helical interpolation is allowed when this variable is set to true. Helical
moves are linearized if set to false.
allowSpiralMoves Spiral interpolation is defined as circular moves that have a different

starting radius than ending radius and can be enabled by setting this
variable to true. Spiral moves are linearized if set to false.

maximumCircularRadius | Specifies the maximum radius of circular moves that can be output as
circular interpolation and can be changed dynamically in the Property
table when running the post processor. Any circular records whose radius
exceeds this value will be linearized. This variable must be set in
millimeters (MM).

maximumCircularRadius = spatial(1000, MM); // 39.37 inch

maximumCircularSweep | Specifies the maximum angular sweep of circular moves that can be
output as circular interpolation and is specified in radians. Any circular
records whose delta angle exceeds this value will be linearized.

minimumChordLength Specifies the minimum delta movement allowed for circular interpolation
and can be changed dynamically in the Property table when running the
post processor. Any circular records whose delta linear movement is less
than this value will be linearized. This variable must be set in millimeters
(MM).

minimumCircularRadius | Specifies the minimum radius of circular moves that can be output as
circular interpolation and can be changed dynamically in the Property
table when running the post processor. Any circular records whose radius
is less than this value will be linearized. This variable must be set in
millimeters (MM).

minimumCircularSweep | Specifies the minimum angular sweep of circular moves that can be output
as circular interpolation and is specified in radians. Any circular records
whose delta angle is less than this value will be linearized.

tolerance Specifies the tolerance used to linearize circular moves that are expanded
into a series of linear moves. Circular interpolation records can be
linearized due to the conditions of the circular interpolation settings not
being met or by the linearize function being called. This variable must be
set in millimeters (MM).

Circular Interpolation Settings

allowedCircularPlanes = undefined; // allow all circular planes
allowedCircularPlanes = 0; // disable all circular planes
allowedCircularPlanes = (1 << PLANE_XY) | (1 << PLANE_ZX); /l XY, ZX planes

Entry Functions 4-155
v4a AUTODESK CAM Post Processor Guide 8/8/23

tolerance = spatial(0.002, MM); // linearization tolerance of .00008 IN
minimumChordLength = spatial(0.01, MM); // minimum linear movement of .0004 IN
minimumCircularRadius = spatial(0.01, MM); // minimum circular radius of .0004 IN
maximumCircularRadius = spatial(1000, MM); // maximum circular radius of 39.37 IN
minimumCircularSweep = toRad(0.01); // minimum angular movement of .01 degrees
maximumCircularSweep = toRad(180); // circular interpolation up to 180 degrees
allowHelicalMoves = true; // enable helical interpolation

allowSpiralMoves = false; // disallow spiral interpolation
Example Circular Interpolation Settings

4.25.2 Circular Interpolation Common Functions

There are built-in functions that are utilized by the onCircular function. These functions return values
used in the onCircular function, determine if the circular record should be linearized, and control the
flow of the onCircular function logic.

Function Description

getCircularCenter() Returns the center point of the circle as a Vector.
getCircularChordLength() Returns the delta linear movement of the circular interpolation record.
getCircularNormal() Returns the normal of the circular plane as a Vector. The normal is

flipped if the circular movement is in the clockwise direction. This
follows the righthand plane convention.

getCircularPlane() Returns the plane of the circular interpolation record, PLANE_XY,
PLANE_ZX, or PLANE_YZ. If the return value is -1, then the
circular plane is not a major plane, but is in 3-D space.

getCircularRadius() Returns the end radius of the circular motion.

getCircularStartRadius() Returns the start radius of the circular motion. This will be different
than the end radius for spiral moves.

getCircularSweep() Returns the angular sweep of the circular interpolation record in
radians.

getCurrentPosition() Returns the starting point of the circular move as a Vector.

getHelicalDistance() Returns the distance the third axis will move during helical
interpolation. Returns O for a 2-D circular interpolation record.

getHelicalOffset() Returns the distance along the third axis as a Vector. This function is

used when helical interpolation is supported outside one of the three
standard circular planes.

getHelicalPitch() Returns the distance that the third axis travels for a full 360-degree
sweep, i.e. the pitch value of the thread.

getPositionU(u) Returns the point on the circle at u percent along the arc as a Vector.

isFullCircle() Returns true if the angular sweep of the circular motion is 360
degrees.

Entry Functions 4-156
v4a AUTODESK CAM Post Processor Guide 8/8/23

Function Description

isHelical() Returns true if the circular interpolation record contains helical
movement. The variable allowHelicalMoves must be set to true for
helical records to be passed to the onCircular function.

isSpiral() Returns true if the circular interpolation record contains spiral
movement (the start and end radii are different). The variable
allowSpiralMoves must be set to true for spiral records to be passed to
the onCircular function.

linearize(tolerance) Linearizes the circular motion by outputting a series of linear moves.
onCircular Common Functions

4.25.3 Helical Interpolation

Helical interpolation is defined as circular interpolation with movement along the third linear axis. The
third linear axis is defined as the axis that is not part of the circular plane, for example, the Z-axis is the
third linear axis for circular interpolation in the XY -plane. The variable allowHelicalMoves must be set
to true for the post processor to support helical interpolation.

Helical interpolation is typically output using the same format as circular interpolation with the addition
of the third axis and optionally a pitch value (incremental distance per 360 degrees) for the third axis.
Most stock post processors are already setup to output the third axis with circular interpolation (it won't
be output for a 2-D circular move).

case PLANE_XY:
writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2 : 3),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
iOutput.format(cx-start.x, 0), jOutput.format(cy-start.y, 0), kOutput.format(getHelicalPitch()),
feedOutput.format(feed));
break;

Helical Interpolation with Pitch Output

4.25.4 Spiral Interpolation

Spiral interpolation is defined as circular interpolation that has a different radius at start of the circular
move than the radius at the end of the move. The variable allowSpiralMoves must be set to true for the
post processor to support helical interpolation.

Spiral interpolation when supported on a control is typically specified with a G-code different than the
standard G02/G03 circular interpolation G-codes. Most stock post processors do not support spiral
interpolation.

if (isSpiral()) {
var startRadius = getCircularStartRadius();
var endRadius = getCircularRadius();
var dr = Math.abs(endRadius - startRadius);

Entry Functions 4-157
v4a AUTODESK CAM Post Processor Guide 8/8/23

if (dr > maximumCircularRadiiDifference) { // maximum limit
if (isHelical()) { // not supported
linearize(tolerance);
return;

}

switch (getCircularPlane()) {
case PLANE_XY:
writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2.1 : 3.1),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), getFeed(feed));
break;
case PLANE_ZX:
writeBlock(gPlaneModal.format(18), gMotionModal.format(clockwise ? 2.1 : 3.1),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), getFeed(feed));
break;
case PLANE_YZ:
writeBlock(gPlaneModal.format(19), gMotionModal.format(clockwise ? 2.1 : 3.1),
xOutput.format(x), yOutput.format(y), zOutput.format(z),
JOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), getFeed(feed));
break;
default:
linearize(tolerance);
¥
return;
}
}

Spiral Interpolation Output

4.25.5 3-D Circular Interpolation

3-D circular interpolation is defined as circular interpolation that is not on a standard circular plane (XY,
ZX, YZ).

3-D circular interpolation when supported on a control is typically specified with a G-code different than
the standard G02/GO03 circular interpolation G-codes and must contain either the mid-point of the
circular move and/or the normal vector of the circle. Most stock post processors do not support 3-D
circular interpolation.

default:
if (getProperty("allow3DArcs")) { // a post property is used to enable support of 3-D circular
/I make sure maximumCircularSweep is well below 360deg
var ip = getPositionU(0.5); // calculate mid-point of circle
writeBlock(gMotionModal.format(clockwise ? 2.4 : 3.4), // 3-D circular direction G-codes
Entry Functions 4-158

4 AUTODESK cAM Post Processor Guide 8/8/23

xOutput.format(ip.x), yOutput.format(ip.y), zOutput.format(ip.z), // output mid-point of circle
getFeed(feed));
writeBlock(xOutput.format(x), yOutput.format(y), zOutput.format(z)); // output end-point
}else {
linearize(tolerance);
}
}

3-D Circular Interpolation Output

4 .26 invokeOnCircular

\ invokeOnCircular(clockwise, cx, ¢y, ¢z, X, ¥, Z, i,], Kk, feed); \

Arguments Description

clockwise Set to true if the direction of the circular is in the clockwise direction, false if it
is counter-clockwise.

CX, CY, CZ The center of the circle.

X, Y, 2 The tool position.

i, K The normal vector of the circle.

feed The feedrate.

It is possible that the post processor will need to generate circular arcs during the processing of the
intermediate file. To do this invokeOnCircular can be called. Calling invokeOnCircular ensures that
the post engine is notified of the arc move and the current position is set. invokeOnCircular will then
call onCircular with the provided arguments and setting the proper circular variables.

4.27 onCycle
| function onCycle() { |

The onCycle function is called once at the beginning of an operation that contains a canned cycle and
can contain code to prepare the machine for the cycle. Mill post processors will typically set the
machining plane here.

function onCycle() {
writeBlock(gPlaneModal.format(17));

¥

Sample onCycle Function

Mill/Turn post processors will usually handle the stock transfer sequence in the onCycle function. Logic
for the Mill/Turn post processors will be discussed in a dedicated chapter.

4.28 onCyclePoint
| function onCyclePoint(x, y, z) { |

Entry Functions 4-159
v4a AUTODESK CAM Post Processor Guide 8/8/23

Argument Description
X,Y,Z Hole bottom location.

Canned cycle output is handled in the onCyclePoint function, which includes positioning to the
clearance plane, formatting of the cycle block, calculating the cycle parameters, discerning if the canned
cycle is supported on the machine or should be expanded, and probing cycles which will not be
discussed in this chapter.

The location of the hole bottom for the cycle is passed in as the x, y, z arguments to the onCyclePoint
function. All other parameters are available in the cycle object or through cycle specific function calls.
The flow of outputting canned cycles usually follows the following logic.

1. First hole location in cycle
a. Position to clearance plane
b. Canned cycle is supported on machine
i. Calculate common cycle parameters
ii. Format and output canned cycle
c. Canned cycle is not supported on machine
i. Expand cycle into linear moves
2. 2" through n™ holes
a. Cycle is not expanded
i. Output hole location
b. Cycle is expanded
i. Expand cycle at new location

The actual output of the cycle blocks is handled in a switch block, with a separate case for each of the
supported cycles.

switch (cycleType) {
case "drilling":
writeBlock(
gRetractModal.format(98), gAbsincModal.format(90), gCycleModal.format(81),
getCommonCycle(x, y, z, cycle.retract),
feedOutput.format(F)

);
break;

Sample Cycle Formatting Code

If a cycle is not supported and needs to be expanded by the post engine, then you can either remove the
entire case block for this cycle and it will be handled in the default block, or you can specifically expand
the cycle. The second method is handy when the canned cycle does not support all of the parameters
available in HSM, for example if a dwell is not supported for a deep drilling cycle on the machine, but
you want to be able to use a dwell.

case "deep-drilling":
if (P >0){ //the machine does not support a dwell code, so expand the cycle
Entry Functions 4-160

4 AUTODESK cAM Post Processor Guide 8/8/23

expandCyclePoint(x, vy, z);
}else {
writeBlock(
gRetractModal.format(98), gAbsincModal.format(90), gCycleModal.format(83),
getCommonCycle(x, y, z, cycle.retract),
"Q" + xyzFormat.format(cycle.incrementalDepth),
feedOutput.format(F)
)i

}
break;

Expanding a Cycle When a Feature is not Support on the Machine

The 2" through the n' locations in a cycle operation are typically output using simple XY moves
without any of the cycle definition codes. Expanded cycles still need to be expanded at these locations.

} else { // end of isFirstCyclePoint() condition
if (cycleExpanded) {
expandCyclePoint(x, y, z);
}else {
var _x = xOutput.format(x);
var _y = yOutput.format(y);
if (! x&&! y){
xOutput.reset(); / at least one axis is required
_X = xOutput.format(x);

}
writeBlock(_X, _y);

¥
¥

Output the 2" through n'" Cycle Locations

4.28.1Drilling Cycle Types

The following table contains the drilling (hole making cycles). The cycle type is stored in the cycleType
variable as a text string. The standard G-code used for the cycle is included in the description, where
expanded defines the cycle as usually not being supported on the machine and expanded instead.

cycleType Description

drilling Feed in to depth and rapid out (G81)

counter-boring Feed in to depth, dwell, and rapid out (G82)

chip-breaking Multiple pecks with periodic partial retract to clear chips (G73)

deep-drilling Peck drilling with full retraction at end of each peck (G83)

break-through-drilling Allows for reduced speed and feed before breaking through hole
(expanded)

gun-drilling Guided deep drilling allows for a change in spindle speed for
positioning (expanded)

Entry Functions 4-161
v4a AUTODESK CAM Post Processor Guide 8/8/23

cycleType Description

tapping Feed in to depth, reverse spindle, optional dwell, and feed out.
Automatically determines left or right tapping depending on the tool
selected. (G74/G84)

left-tapping Left-handed tapping (G74)

right-tapping

Right-handed tapping (G84)

tapping-with-chip-breaking

Tapping with multiple pecks. Automatically determines left or right
tapping depending on the tool selected. (expanded)

reaming Feed in to depth and feed out (G85)

boring Feed in to depth, dwell, and feed out (G86)

stop-boring Feed to depth, stop the spindle, and feed out (G87)

fine-boring Feed to depth, orientate the spindle, shift from wall, and rapid out
(G76)

back-boring Orientate the spindle, rapid to depth, start spindle, shift the tool to

wall, feed up to bore height, orientate spindle, shift from wall, and
rapid out (G77)

circular-pocket-milling

Mills out a hole (expanded)

thread-milling

Helical thread cutting (expanded)

Types of Drilling Cycles

Any of these cycles can be expanded if the machine control does not support the specific cycle. There
are some caveats, where the post (and machine) must support certain capabilities for the expanded cycle
to run correctly on the machine. The following table lists the commands that must be defined in the
onCommand function to support the expansion of these cycles. It is expected that the machine will
support these features if they are enabled in the post processor.

right-tapping
tapping-with-chip-breaking

cycleType Supported onCommand Command
tapping COMMAND_SPINDLE_CLOCKWISE
left-tapping COMMAND_SPINDLE_COUNTERCLOCKWISE

COMMAND_ACTIVATE_SPEED_FEED_SYNCHRONIZATION
COMMAND_DEACTIVATE_SPEED_FEED_SYNCHRONIZATION

stop-boring

COMMAND_STOP_SPINDLE
COMMAND_START_SPINDLE

fine-boring
back-boring

COMMAND_STOP_SPINDLE
COMMAND_START_SPINDLE
COMMAND_ORIENTATE_SPINDLE

Required Command Support for Expanded Cycles

Certain cycles will use the following parameters when they are expanded.

machineParameters.

Description

drillingSafeDistance

Specifies the safety distance above the stock when repositioning into
the hole for the chip-breaking and deep-drilling cycles.

spindleOrientation

The spindle orientation angle after orientating the spindle.

spindleSpeedDwell

Dwell in seconds after the spindle speed changes during a cycle.

Entry Functions 4-162

4 AUTODESK cAM Post Processor Guide 8/8/23

Parameters for Expanded Cycles

You define the expanded cycle parameters using the following syntaxes.

machineParameters.drillingSafeDistance = toPreciseUnit(2, MM);
machineParameters.spindleOrientation = 0;
machineParameters.spindleSpeedDwell = 1.5;

Defining Expanded Cycles Parameters

4.28.2 Cycle parameters

The parameters defined in the cycle operation are passed to the cycle functions using the cycle object.
The following variables are available and are referenced as ‘cycle.parameter’.

Parameter

Description

accumulatedDepth

The depth of the combined cuts before the tool will be fully retracted
during a chip-breaking cycle.

backBoreDistance

The cutting distance of a back-boring cycle.

bottom

The bottom of the hole.

breakThroughDistance

The distance above the hole bottom to switch to the break-through
feedrate and spindle speed during a break-through-drilling cycle.

breakThroughFeedRate

The feedrate used when breaking through the hole during a break-
through-drilling cycle.

breakThroughSpindleSpeed

The spindle speed used when breaking through the hole during a
break-through-drilling cycle.

chipBreakDistance

The distance to retract the tool to break the chip during a chip-
breaking cycle.

clearance

Clearance plane where to tool will retract the tool to after drilling a
hole and position to the next hole.

compensation

Radius compensation in effect for circular-pocket-milling and thread-
milling cycles. This value can be control, wear, and inverseWear.

compensationShiftOrientation

Same as shiftOrientation.

depth The depth of the hole.

diameter The diameter of the hole for circular-pocket-milling and thread-
milling cycles.

direction Either climb or conventional milling for circular-pocket-milling and
thread-milling cycles.

dwell The dwell time in seconds.

dwellDepth The distance above the cut depth at which to dwell, used for gun-
drilling cycles.

feedrate The primary cutting feedrate.

incrementalDepth

The incremental pecking depth of the first cut.

incrementalDepthReduction

The incremental pecking depth reduction per cut for pecking cycles.

minimumIncrementalDepth

The minimum pecking depth of cut for pecking cycles.

numberOfSteps

The number of horizontal passes for the thread-milling cycle.

Entry Functions 4-163

4 AUTODESK cAM Post Processor Guide 8/8/23

Parameter

Description

plungeFeedrate

The cutting feedrate. The same as feedrate.

plungesPerRetract

The number of cuts before the tool will be fully retracted during a
chip-breaking cycle.

postioningFeedrate

The feedrate used to position the tool during a gun-drilling cycle.

positioningSpindleSpeed

The spindle speed used when positioning the tool during a gun-
drilling cycle.

repeatPass Set to true if the final pass should be repeated for circular-pocket-
milling and thread-milling cycles.

retract The plane where the tool will position to prior to starting the cycle
(feeding into the hole).

retractFeedrate The tool retraction feedrate, used when feeding out of the hole.

shift The distance to shift the tool away from the wall during a fine-boring

and back-boring cycle.

shiftDirection

The direction in radians to shift the tool away from the wall during a
fine-boring and back-boring cycle. The shift direction will be PI
radians (180 degrees) from the wall plus this amount.

shiftOrientation

The spindle orientation of the tool in radians when shifting the tool
away from the wall during a fine-boring or back-boring cycle.

stepover The horizontal stepover distance for circular-pocket-milling and
thread-milling cycles.

stock The top of the hole.

stopSpindle When set to 1, the spindle will be stopped during
positioning/retracting in a gun-drilling cycle.

threading Either right or left-handed threading for thread-milling cycles.

Cycle Parameters

4.28.3 The Cycle Planes/Heights

The drilling cycles use different heights during the execution of the cycle. These heights are specified in
the Heights tab for the Drilling operation. One thing you should keep in mind is that the names given to
these heights do not match the cycle parameter names in the post processor. The following table gives
the relationship between the HSM height names and the equivalent cycle parameter names.

Operation Heights Tab

Cycle Parameter Description

Clearance Height

(none) The plane to position to the
first point of the cycle and to
retract the tool to after the
final point of the cycle.

Retract Height

cycle.clearance The tool rapids to this plane
from the clearance height
and will position between the
holes at this height.

Feed Height

cycle.retract The tool will feed from this
plane into the hole.

Entry Functions 4-164

4 AUTODESK cAM Post Processor Guide 8/8/23

Operation Heights Tab Cycle Parameter Description

Top Height cycle.stock The top of the hole.

Bottom Height cycle.bottom The bottom of the hole. This
height is the plane where the
tool will drill to and will be
different from the actual
bottom of the hole if the
Drill tip through bottom box
is checked.

Correlation Between Cycle Operation Heights and Cycle Parameters

HSM assumes that the tool will always be retracted to the Retract Height (cycle.clearance) between
holes, you will notice this in the simulation of the cycle in HSM. This is typically handled in the
machine control with a G98 (Retract to clearance plane) code. Of course this code can be different from
machine control to machine control and there are controls that will always retract to the Feed Height
(cycle.retract) at the end of a drilling operation. In this case it is up to the post processor to retract the
tool to the Retract Height.

You can cancel the cycle at the end of the onCyclePoint function and output a tool retract block to take
the tool back up to the Retract Height. When this method is used it is also mandatory that the full cycle
be output for every hole in the operation and not just the first cycle point. Some machines support a
retract plane to be specified with the cancel cycle code, i.e. G80 Rxxx.

function onCyclePoint(x, y, z) {
/I if (isFirstCyclePoint()) {
if (true) { // output a full cycle block for every hole in the operation
repositionToCycleClearance(cycle, X, vy, 2);

default:
expandCyclePoint(x, vy, z);
}
/I retract tool (add at the end of the cycleType switch code)
gMotionModal.format.reset();
writeBlock(gCycleModal.format(80), gMotionModal.format(0), zOutput.format(cycle.clearance));

}else {
if (cycleExpanded) {

Retracting the Tool to the Retract Plane when Unsupported by Machine Control

4.28.4 Common Cycle Functions

There are functions that are commonly used in the onCyclePoint function. The following table lists
these functions.

Entry Functions 4-165
v4a AUTODESK CAM Post Processor Guide 8/8/23

Function Description

isFirstCyclePoint() Returns true if this is the first point in the cycle operation. Itis
usually called to determine whether to output a full cycle block or
just the cycle location.

isLastCyclePoint() Returns true if this is the last point in the cycle operation. This
function is typically used for a lathe threading operation since
HSM sends a single pass to the onCyclePoint function and the full
depth of the thread is required to output a single threading block.
onCycleEnd is used to terminate a drilling cycle, so this function is
not typically used in drilling cycles.

isProbingCycle() Returns true if this is a probing cycle.

repositionToCycleClearance() Moves the tool to the Retract Height plane (cycle.clearance). This
function is typically called prior to outputting a full cycle block.

getCommonCycle(x, y, z, r) Formats the common cycle parameters (X, Y, Z, R) for output.

Common Cycle Functions

These functions are built into the post engine, except the getCommonCycle function, which is contained
in the post processor. It takes the cycle location (X, y, z) and the retract plane/distance (r) as arguments.
Some machines require that the retract value be programmed as a distance from the current location
rather than as an absolute position. There are two ways to accomplish this. You can pass in the distance
as the retract value.

function getCommonCycle(x, vy, z, r) {
forceXYZ();
return [xOutput.format(x), yOutput.format(y),
zOutput.format(z),
"R" + xyzFormat.format(r)];

¥

case "drilling":
writeBlock(
gRetractModal.format(98), gAbsincModal.format(90), gCycleModal.format(81),
getCommonCycle(x, y, z, cycle.retract — cycle.clearance),
feedOutput.format(F)

);
break:

Pass Retract Distance to Standard getCommonCycle Function

Or you can pass the clearance plane in to the getCommonCycle function and have it calculate the
distance. This method is typically used in post processors that support subprograms that require a retract
plane while in absolute mode and a distance when in incremental mode.

function getCommonCycle(x,y, z, 1, ¢) {
forceXYZ(); // force xyz on first drill hole of any cycle
if (incrementalMode) {
zOutput.format(c);

Entry Functions 4-166
v4a AUTODESK CAM Post Processor Guide 8/8/23

return [xOutput.format(x), yOutput.format(y),
"Z" + xyzFormat.format(z - r),
"R" + xyzFormat.format(r - ¢)];
}else {
return [xOutput.format(x), yOutput.format(y),
zOutput.format(z),
"R" + xyzFormat.format(r)];

¥
¥

case "drilling":
writeBlock(
gRetractModal.format(98), gCycleModal.format(81),
getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
feedOutput.format(F)

);
break;

Pass Retract and Clearance Heights to getCommonCycle Function

4.28.5 Pitch Output with Tapping Cycles

Tapping cycles can be sometimes be output with a standard FPM feedrate, sometimes with a thread
pitch, and sometimes using the FPR feedrate mode. There are different variables and formats involved
depending on the format used. When using pitch or FPR feedrates you will need to create a format for
this style of feedrate. The format is defined at the top of the post processor with the rest of the format
definitions. Refer to the Format Defintions and Output Variable Definitions sections.

var feedFormat = createFormat({decimals:(unit == MM ? 0 : 1), forceDecimal:true});
var pitchFormat = createFormat({decimals:(unit == MM ? 3 : 4), forceDecimal:true});

var feedOutput = createVariable({prefix:"F"}, feedFormat);
var pitchOutput = createVariable({prefix:"'F", force:true}, pitchFormat);
Create the Pitch Output Format

In the tapping sections of the onCyclePoint function you will need to assign the correct pitch value to the
output. The tapping pitch is stored in the tool.threadPitch variable.

case "tapping":
writeBlock(

gRetractModal.format(98), gCycleModal.format((84),
getCommonCycle(x, y, z, cycle.retract),
(conditional(P > 0, "P" + milliFormat.format(P)),
pitchOutput.format(tool.threadPitch)
);
forceFeed(); // force the feedrate to be output after a tapping cycle with pitch output
break;

Entry Functions 4-167
v4a AUTODESK CAM Post Processor Guide 8/8/23

Output the Thread Pitch on a Tapping Cycle

If the tapping cycle requires that the machine be placed in FPR mode, then you can also calculate the
pitch value by dividing the feedrate by the spindle speed. You will also need to output the FPR code

(G95) with the tapping cycle and reset it at the end of the tapping operation, usually in the onCycleEnd
function.

case "tapping":
var F = cycle.feedrate / spindleSpeed;
writeBlock(

gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format((84),
getCommonCycle(x, y, z, cycle.retract),

(conditional(P > 0, "P" + milliFormat.format(P)),

pitchOutput.format(F)

);

forceFeed(); // force the feedrate to be output after a tapping cycle with pitch output
break;

Output the Feedrate as FPR on a Tapping Cycle

4.29 onCycleEnd
| function onCycleEnd() { |

The onCycleEnd function is called after all points in the cycle operation have been processed. The cycle

is cancelled in this function and the feedrate mode (FPM) is reset if it is a tapping operation that uses
FPR feedrates.

function onCycleEnd() {
if (TcycleExpanded) {
writeBlock(gCycleModal.format(80));
I/ writeBlock(gFeedModeModal.format(94)), gCycleModal.format(80)); / reset FPM mode
zOutput.reset();
}
}

onCycleEnd Function

4 .30 onRewindMachine
| function onRewindMachine(_a, b, c){

Argument Description
“a, b, ¢ Rotary axes rewind positions.

Entry Functions 4-168
v4a AUTODESK CAM Post Processor Guide 8/8/23

The onRewindMachine function is used to reposition the rotary axes when a machine limit is reached. It
is described in detail in the Rewinding of the Rotary Axis when Limits are Reached section of this
manual.

4 .31 Common Functions

There are functions that are common in most of the generic posts. Some of these functions are used in
conjuction with other post processor functions and are described in the appropriate section of this
manual, for example the formatComment function is described with the onComment function. This
section describes the common functions that are generic in nature and used throughout the post
processor.

4.31.1 writeln
| writeln(text);

Arguments Description
text Text to output to the NC file

The writeln function is built into the post engine and is not defined in the post processor. It is used to
output text to the NC file without formatting it. Text can be a quoted text string or a text expression.
writeln is typically used for outputting text strings that don't require formatting, or debug messages.

writeln("%"); // outputs '%'

writeln("Vector = " + new Vector(X, y, z)); // outputs the x, y, z variables in vector format
writeln(*"); // outputs a blank line

writeln(formatComment("Load tool " + tool.number + " in spindle™);

// outputs 'Load tool n in spindle' as a comment
Sample writeln Calls

4.31.2 writeBlock
| function writeBlock(arguments) {

Arguments Description
arguments Comma separated list of codes/text to output.

The writeBlock function writes a block of codes to the output NC file. It will add a sequence number to
the block, if sequence numbers are enabled and add an optional skip character if this is an optional
operation. A list of formatted codes and/or text strings are passed to the writeBlock function. The code
list is separated by commas, so that each code is passed as an individual argument, which allows for the
codes to be separated by the word separator defined by the setWordSeparator function.

/**

Writes the specified block.

Entry Functions 4-169
v4a AUTODESK CAM Post Processor Guide 8/8/23

*/
function writeBlock() {
var text = formatWords(arguments);
if (Mtext) {
return;
}
if (getProperty("showSequenceNumbers™)) { // add sequence numbers to output blocks
if (optionalSection) {

if (text) {
writeWords("/", "N" + sequenceNumber, text);
}
}else {
writeWords2("N" + sequenceNumber, text);
}

sequenceNumber += getProperty(*sequenceNumberincrement™);
} else { // no sequence numbers
if (optionalSection) {
writeWords2("/", text);
}else {
writeWords(text);
}
}
}

Sample writeBlock Function

writeBlock(gAbsincModal.format(90), xFormat.format(x), yFormat.format(y));

writeBlock("G28", "X" + xFormat.format(0), "Y" + yFormat.format(0)); // outputs 'G28 X0 YO'

writeBlock("G28" + "X" + xFormat.format(0) + "Y" + yFormat.format(0)); // outputs 'G28 X0Y0'
Sample writeBlock Calls

The writeBlock function does not usually have to be modified.

4.31.3 toPreciseUnit
| toPreciseUnit(value, units);

Arguments Description
value The input value.
units The units that the value is given in, either MM or IN.

The toPreciseUnit function allows you to specify a value in a given units and that value will be returned
in the active units of the input intermediate CNC file. When developing a post processor, it is highly
recommended that any unit based hard coded numbers use the toPreciseUnit function when defining the
number.

Entry Functions 4-170
v4a AUTODESK CAM Post Processor Guide 8/8/23

yAXxisMinimum = toPreciseUnit(gotY Axis ? -50.8 : 0, MM); // minimum range for the Y-axis
yAxisMaximum = toPreciseUnit(gotY Axis ? 50.8 : 0, MM); // maximum range for the Y-axis
xAxisMinimum = toPreciseUnit(0, MM); // maximum range for the X-axis (radius mode)

Defining Values using toPreciseUnit

4.31.4 force---

The force functions are used to force the output of the specified axes and/or feedrate the next time they

are supposed to be output, even if it has the same value as the previous value.

Function Description

forceXYZ Forces the output of the linear axes (X, Y, Z) on the next motion block.
forceABC Forces the output of the rotary axes (A, B, C) on the next motion block.
forceFeed Forces the output of the feedrate on the next motion block.

forceAny Forces all axes and the feedrate on the next motion block.

Force Functions

[** Force output of X, Y, and Z on next output. */
function forceXYZ() {

xOutput.reset();

yOutput.reset();

zOutput.reset();

¥

/** Force output of A, B, and C on next output. */
function forceABC() {

aOutput.reset();

bOutput.reset();

cOutput.reset();

¥

[** Force output of F on next output. */
function forceFeed() {
currentFeedld = undefined;
feedOutput.reset();

}

[** Force output of X, Y, Z, A, B, C, and F on next output. */
function forceAny() {

forceXYZ();

forceABC();

forceFeed();

¥

Sample Force Functions

4 AUTODESK cAM Post Processor Guide 8/8/23

Entry Functions 4-171

4.31.5 writeRetract
\ function writeRetract(arguments) {

Arguments Description
arguments X, Y, and/or Z. Separated by commas when multiple axes are specified.

The writeRetract function is used to retract the Z-axis to its clearance plane and move the X and Y axes
to their home positions.

The writeRetract function can be called with one or more axes to move to their home position. The axes
are specified using their standard names of X, Y, Z, and are separated by commas if multiple axes are
specified in the call to writeRetract.

writeRetract(Z); // move the Z-axis to its home position
writeRetract(X, Y); // move the X and Y axes to their home positions
Sample writeRetract Calls

The writeRetract function is not generic in nature and may have to be changed to match your machine's
requirements. For example, some machines use a G28 to move an axis to its home position, some will
use a G53 with the home position, and some use a standard G0O block.

/** Output block to do safe retract and/or move to home position. */
function writeRetract() {

/I initialize routine

var _xyzMoved = new Array(false, false, false);

var _useG28 = getProperty("useG28"); // can be either true or false

/I check syntax of call
if (arguments.length == 0) {
error(localize("No axis specified for writeRetract()."));
return;
}
for (var i = 0; i < arguments.length; ++i) {
if ((arguments[i] < 0) || (arguments[i] > 2)) {
error(localize("Bad axis specified for writeRetract()."));
return;
}
if (_xyzMoved[arguments[i]]) {
error(localize("Cannot retract the same axis twice in one line"));
return;
}
_xyzMoved[arguments[i]] = true;

¥

// special conditions

Entry Functions 4-172
v4a AUTODESK CAM Post Processor Guide 8/8/23

if (useG28 && xyzMoved[2] && (_xyzMoved[0] || _xyzMoved[1])) { // XY don't use G28
error(localize(*"You cannot move home in XY & Z in the same block."));
return;

}

if (_xyzMoved[0] || _xyzMoved[1]) {
_useG28 = false;

¥

/I define home positions
var _XxHome;
var _yHome;
var _zHome;
if (_LuseG28) {
_XHome =0;
_yHome =0;
_zZHome = 0;
}else {
if (getProperty("homePositionCenter") &&
hasParameter("part-upper-x") && hasParameter("part-lower-x")) {
_xHome = (getParameter("part-upper-x") + getParameter("part-lower-x")) / 2;
}else {
_xHome = machineConfiguration.hasHomePositionX() ?
machineConfiguration.getHomePositionX() : 0;
}
_yHome = machineConfiguration.hasHomePositionY () ?
machineConfiguration.getHomePositionY() : 0;
_zHome = machineConfiguration.getRetractPlane();

¥

/l format home positions
var words = []; // store all retracted axes in an array
for (var i = 0; i < arguments.length; ++i) {
I define the axes to move
switch (arguments[i]) {
case X:
/1 special conditions
if (getProperty("homePositionCenter")) { // output X in standard block by itself if centering
writeBlock(gMotionModal.format(0), xOutput.format(_xHome));
_XxyzMoved[0] = false;
break;

words.push(*X" + xyzFormat.format(_xHome));
break;

case Y:
words.push("Y" + xyzFormat.format(_yHome));
break;

Entry Functions 4-173
v4a AUTODESK CAM Post Processor Guide 8/8/23

case Z:
words.push("Z" + xyzFormat.format(_zHome));
retracted = true;
break;

¥
¥

/[output move to home
if (words.length > 0) {
if (_useG28) { // use G28 to move to home position
gAbsincModal.reset();
writeBlock(gFormat.format(28), gAbsincModal.format(91), words);
writeBlock(gAbsincModal.format(90));
} else {// use G53 to move to home position
gMotionModal.reset();
writeBlock(gAbsincModal.format(90), gFormat.format(53), gMotionModal.format(0), words);
}

I/ force any axes that move to home on next block

if (_ xyzMoved[0]) {
xOutput.reset();

}

if (_ xyzMoved[1]) {
yOutput.reset();

}

if (_ xyzMoved[2]) {
zOutput.reset();

}

}
}

Sample writeRetract Function

5 Manual NC Commands

Manual NC commands are used to control the behavior of individual operations when there is not a
setting in the operation form for controlling a specific feature of a control. You can use Manual NC
commands to display a message, insert codes into the output NC file, perform an optional stop, define a
setting, etc. The Manual NC menu is accessed from different areas of the ribbon menu depending on the
product you are running.

Manual NC Commands 5-174
v4a AUTODESK CAM Post Processor Guide 8/8/23

O K- H - -

b View Insert Tools Window Help

psneet | 4 | @ B %
Lib Drilling| 2D 30 Multi-
fbrary Milling Milling Milli

__serup- LN @ [& Post Process P B Manager | - o)

(L New Setup) |j Setup Sheet she
E‘ Mo Fo Simulate B Setup Folder Pattern CAM s Drill Wizard
400 @ ew Folder 2 Generate

D \d\ & [E- New Pattern Toolpath

[}
: T

| § Probe enchmark INCH.ipt Op| 17 ot |

I m-=2 -7 f &

3D Meodel

Sketch Annotate Inspet

Drill

Manual NC

o= EE &

Probe

Selecting a Manual NC Cﬁc’)\mrm'and in the HSM Products (Fusion 360, Inventor, HSMWorks)

Once you select the Manual NC menu you will see a form displayed that is used to select the type of
Manual NC command that you want to pass to the post processor and optionally the parameter that will
be passed with the command.

@ MANUALNC : MANUAL MCZ2

Pazses

¥ Manual NC

Manual Type Comment b
Comment
(i) OK Cancel

"Defining a Manual NC Command

If you use a Manual NC command in your part, then it is necessary that the post processor is equipped to
handle this command. Some of the commands are supported by the stock post processors, such as Stop,
Optional stop, and Dwell, while support would have to be added to the post processor to support other
Manual NC commands. If you use a Manual NC command that is not supported by the post, then it will
either generate an error or be ignored. The general rule is it will generate an error if the onCommand
function is called and will be ignored when another function is called.

5.1 onManualNC and expandManualNC

function onManualNC(command, value) {
expandManualNC(command, value)

Arguments Description
command The Manual NC command that invoked the function.
value The value entered with the command.

Manual NC Commands 5-175
v4a AUTODESK CAM Post Processor Guide 8/8/23

The onManualNC function is defined in the post processor and is used to process Manual NC
commands. It accepts the command and the value that is assigned to the command. If the onManualNC
function is not defined in the post processor, then a separate function will be called as listed in the table

below.

The expandManualNC command can also be used to process the Manual NC command using the
separate functions listed in the table. Itis typically used as the default condition in the onManualNC
function to process commands where you do not care if they are entered as a Manual NC command or
from an internal call in the post processor.

The following table describes the Manual NC commands along with the function that will be called
when the command is processed when the onManualNC function does not exist or expandManualNC is

called.
Manual NC | Description Command Value Function Called
Command
Comment Operator message | COMMAND_COMMENT message onComment
Stop Machine stop COMMAND_STOP onCommand
Optional Optional stop COMMAND_OPTIONAL_STOP onCommand
Stop
Dwell Dwell COMMAND_DWELL Dwell time | onDwell
in seconds
Tool break Check for tool COMMAND_BREAK_CONTROL onCommand
control breakage
Measure tool | Automatically COMMAND_TOOL_MEASURE onCommand
measure tool
length
Star-t Chlp Start Chlp COMMAND_START_CHIP_TRANSPORT onCommand
transport conveyor
Stop chip Stop chip COMMAND_STOP_CHIP_TRANSPORT onCommand
transport conveyor
Open door Open main door COMMAND_OPEN_DOOR onCommand
Close door Close main door COMMAND_CLOSE_DOOR onCommand
Calibrate Calibration of COMMAND_CALIBRATE onCommand
machine
Verify Verify integrity of | COMMAND_VERIFY onCommand
machine
Clean Request a cleaning | COMMAND_CLEAN onCommand
cycle
Action User defined COMMAND_ACTION text onParameter
action
Print Print a message COMMAND_PRINT_MESSAGE message onParameter
message from the machine
Display Display operator COMMAND_DISPLAY_MESSAGE | message onParameter
message message

4 AUTODESK cAM Post Processor Guide 8/8/23

Manual NC Commands 5-176

Manual NC | Description Command Value Function Called

Command

Alarm Create an alarm on | COMMAND_ALARM onCommand
the machine

Alert Request an alert COMMAND_ALERT onCommand
event on the
machine

Pass through | Output literal text | COMMAND_PASS_THROUGH text onPassThrough
to NC file

Force tool Force a tool section.getForceToolChange() (none)

change change

Call program | Call a subprogram | COMMAND_CALL_PROGRAM text onParameter

Manual NC Commands

5.1.1 Sample onManualNC Function

The onManualNC function is a recent addition to the post processor and will not be found in most
generic post processors. You do not have to define it to process Manual NC commands, and if it is
defined, do not need to process all Manual NC commands in this function. It could be used to process
only the commands where you need to know if they were generated from a CAM Manual NC command
instead of a direct call from within the post processor.

For example, the following onManualNC function definition could be used to process comments entered
using the CAM Manual NC command differently than comments generated from the post processor. It
simply appends the text ‘MSG,’ prior to the comment for a Manual NC Display comment command. All
other Manual NC commands are processed normally.

function onManualNC(command, value) {
switch (command) {
case COMMAND_DISPLAY_MESSAGE:
writeComment("MSG, " + value);
break;
default:
expandManualNC(command, value); // normal processing of Manual NC command
}
}

Handling of Display Message Command in onManualNC

5.1.2 Delay Processing of Manual NC Commands

Manual NC commands are processed at the placement in the operation tree where they are entered,
which means that they will be processed prior to the call to onSection. Since onSection typically
terminates the previous operation prior to starting the new operation, this might not be the desirable
location to process the Manual NC command.

Manual NC Commands 5-177
v4a AUTODESK CAM Post Processor Guide 8/8/23

The following code examples show how Manual NC commands can be buffered and output at any point
during the operation. You can simply copy the onManualNC and executeManualNC functions into your

post processor and add the appropriate call(s) to executeManualNC where you want to process the
Manual NC commands.

/**

Buffer Manual NC commands for processing later
*/
var manualNC =[];
function onManualNC(command, value) {
manualNC.push({command:command, value:value});

¥
/**

Processes the Manual NC commands
Pass the desired command to process or leave argument list blank to process all buffered
commands
*/
function executeManualNC(command) {
for (var i = 0; i < manualNC.length; ++i) {
if (lcommand || (command == manualNC[i].command)) {
switch(manualNC[i].command) {
case COMMAND_DISPLAY_MESSAGE:
writeComment("MSG, " + manualNC[i].value);
break;
default:
expandManualNC(manualNC[i].command, manualNC[i].value);
}
}
}
for (var i = manualNC.length -1;i>=0; --i) {
if (lcommand || (command == manualNCJi].command)) {
manualNC.splice(i, 1);
}
}
}

Manual NC Commands Support Functions

The calls to process the Manual NC commands can be placed anywhere in the post processor. In the
following code example, the COMMAND_DISPLAY_MESSAGE command is processed just before
the tool change block is output and the rest of the Manual NC commands after the tool change block.

executeManualNC(COMMAND_DISPLAY _MESSAGE); // display Manual NC message
writeBlock("T" + toolFormat.format(tool.number), mFormat.format(6));
if (tool.comment) {

writeComment(tool.comment);

Manual NC Commands 5-178
v4a AUTODESK CAM Post Processor Guide 8/8/23

}
executeManualNC(); // process remaining Manual NC commands
Processing of Manual NC Commands in the Desired Location

The following sections give a description of the functions that are called by the Manual NC commands
outside of the onManualNC function and samples on how they are handled in the functions. The
onComment and onDwell functions are described in the Entry Functions chapter, since they are simple
functions and behave in the same manner no matter how they are called.

5.2 onCommand

\ function onCommand(command) {

Arguments Description
command Command to process.

All Manual NC commands that do not require an associated parameter are passed to the onCommand
function and as you see from the Manual NC Commands table, this entails the majority of the
commands. The onCommand function also handles other commands that are not generated by a Manual
NC command and these are described in the onCommand section in the Entry Functions chapter.

/I define commands that output a single M-code
var mapCommand = {
COMMAND_STOP:0,
COMMAND_OPTIONAL_STOP:1,
COMMAND_START_CHIP_TRANSPORT:31,
COMMAND_STOP_CHIP_TRANSPORT:33

Y

function onCommand(command) {
switch (command) {

case COMMAND_BREAK_CONTROL.: // handle the "Tool break' command
if ('toolChecked) { // avoid duplicate COMMAND_ BREAK_ CONTROL

onCommand(COMMAND_STOP_SPINDLE);
onCommand(COMMAND_COOLANT_OFF);
writeBlock(

gFormat.format(65),

"P" + 9853,

"T" + toolFormat.format(tool.number),

"B" + xyzFormat.format(0),

"H" + xyzFormat.format(getProperty(*"toolBreakageTolerance™))

);
toolChecked = true;

¥

Manual NC Commands 5-179
v4a AUTODESK CAM Post Processor Guide 8/8/23

return;
case COMMAND_TOOL_MEASURE: // ignore tool measurements
return;

¥

// handle commands that output a single M-code

var stringld = getCommandStringld(command);

var mcode = mapCommand[stringld];

if (mcode != undefined) {
writeBlock(mFormat.format(mcode));

}else {

onUnsupportedCommand(command);

¥

¥

Handling Manual NC Commands in the onCommand Function

5.3 onParameter

\ function onParameter(name, value) {

Arguments Description
name Parameter name.
value Value stored in the parameter.

The onParameter function is not only called for all parameters defined in the intermediate file (see the
many calls to onParameter in the dump.cps post processor output) it also handles the Action, Call
program, Display message, and Print message Manual NC commands. It is passed both the name of the
parameter being defined and the text string associated with that parameter.

Manual NC Command Name Value
Action action text
Call program call-subprogram text
Display message display text
Print message Print text

Manual NC Commands Handled in onParameter

This section will describe how the Action command can be used, since this is the most commonly used
of these commands.

The Action command is typically used to define post processor settings, similar to the post properties
defined at the top of the post processor, except that the settings defined using this command typically
only apply to a single operation. Since the HSM operations are executed in the order that they are
defined in the CAM tree, the Manual NC command will always be processed prior to the operation that
they precede. You can also use the Action command to define a setting so that the command can be

Manual NC Commands 5-180
v4a AUTODESK CAM Post Processor Guide 8/8/23

executed within another section of the post, by referencing this setting. You can even define settings
that are typically set in the post properties into your program, so you are not reliant on making sure that
the property is set for a specific program. In this case the Action command would set the value of the
post property based on the input value associated with the command.

It is the onParameter function's responsibility to parse the text string passed as part of the Action
command. The text string could be a value, list of values, command and value, etc. The following table
lists the Action commands that are supported by the sample post processor code used in this section.
These Action commands set variables that will be used elsewhere in the program.

Action Command Values Description

Smoothing Off, Low, Medium, High Sets the smoothing type

Tolerance .001-.999 Smoothing tolerance

fastToolChange Yes, No Overrides the fastToolChange
post property

Sample Action Type Manual NC Commands

In this example, the format for entering the Action Manual NC command is to specify the command
followed by the "' separator which in turn is followed by the value, in the Action text field.

@ MANUALNC : MANUAL NC2Z

Paz=es
¥ Manual NC

Manual Type Action -

Action smoothing:low

[] OK Cancel

Action Command Format

var smoothingType = 0;
var smoothingTolerance = .001;
function onParameter(name, value) {
var invalid = false;
switch (name) {
case "action™:
var sTextl = String(value).toUpperCase();
var sText2 = new Array();
sText2 = sTextl.split(":");
if (sText2.length '=2) {
error(localize("Invalid action command: ") + value);
return;

¥

Manual NC Commands 5-181
v4a AUTODESK CAM Post Processor Guide 8/8/23

switch (sText2[0]) {
case "SMOOTHING™:
smoothingType = parseChoice(sText2[1], "OFF", "LOW", "MEDIUM", "HIGH");
if (smoothingType == undefined) {
error(localize("Smoothing type must be Off, Low, Medium, or High™));
return;
¥
break;
case "TOLERANCE":
smoothingTolerance = parseFloat(sText2[1]);
if (isNaN(smoothingTolerance) || ((smoothingTolerance < .001) || (smoothingTolerance >.999))) {
error(localize("Smoothing tolerance must be a value between .001 and .999"));
return;
¥
break;
case "FASTTOOLCHANGE":
var fast = parseChoice(sText2[1], "YES", "NO");
if (fast == undefined) {
error(localize(*'fastToolChange must be Yes or No™));
return;
¥
setProperty("fastToolChange", fast);
break;
default:
error(localize(*Invalid action parameter: ") + sText2[0] + ":" + sText2[1]);
return;
}
}
}

[* returns the choice specified in a text string compared to a list of choices */
function parseChoice() {
var stat = undefined,;
for (i = 1; i <arguments.length; i++) {
if (String(arguments[0]).toUpperCase() == String(argumentsJi]).toUpperCase()) {
if (String(arguments[i]).toUpperCase() == "YES") {
stat = true;
} else if (String(arguments]i]).toUpperCase() == "NO") {
stat = false;
}else {
stat=1i-1;
break;
}
}
}

return stat;

Manual NC Commands 5-182
v4a AUTODESK CAM Post Processor Guide 8/8/23

13

Handling the Action Manual NC Command

To make it easier to use custom Action Manual NC commands you can use the Template capabilities of
HSM. First you will create the Manual NC command that you will turn into a template using the
example in the Action Command Format picture shown above. Once the Manual NC command is
created you will want to give it a meaningful name by renaming it in the Operation Tree.

4 CIEER -
> £ [T]20-Face
> [Smoothing Low Setting [Acti...

[4 [T2]2D-Contour |
Rename the Action Manual NC Command Before Creating Template

Smoothing Low Setting [Action=smoothing:low]

Now you will create a template from this Manual NC command by right clicking on the Manual NC
command and selecting Store As Template. You will want to give the template the same name as you
did in the rename operation.

—ut
»® B Ssmoothing Low Sett Copy - r

[} i@ [T2] 2D-Contour | [__,2 Delete Delete |8 F Specify Template Mame ﬁ

[T2] 2D-Contour with co Al View Toolpath

ﬁJ Edit Notes Template name: Smoothing Low Setting|
ﬂ Show Log Ctri+L

Manual NC - Optional stl: Store As Template oK] [Cancel]
[T2] 2D-Bare

[T2] 2D-Contour with co

. Expand All Children

!’a@ﬁf <

b
b
b
|

Creating the Manual NC Command Template

The template is now ready to be used in other operations and parts. You do this by right clicking a
Setup or a Folder in the Operations Tree, position the mouse over the Create From Template menu and
select the template you created.

4 S nperwcnmean ¢ |-
4 B 2<ﬁ}Edrt

New Operation [
[> 'ﬁ Create FromTemplate p Smoothing Low Setting

@ E New Folder

[» Select Template. .
2 Generate Toolpath Cirl+G ﬂ
D &8 Simulate

Using the Manual NC Command Template You Created

5.4 onPassThrough

| Function onPassThrough (value)

Arguments Description
value Text to be output to the NC file.

Manual NC Commands 5-183
»4d AUTODESK CAM Post Processor Guide 8/8/23

The Pass through Manual NC command is used to pass a text string directly to the NC file without any
processing by the post processor. It is similar to editing the NC file and adding a line of text by hand.
The text string could be standard codes (G, M, etc.) or a simple message. Since the post has no control
or knowledge of the codes being output, it is recommended that you use the Pass through command
sparingly and only with codes that cannot be output using another method.

The onPassThrough function handles the Pass through Manual NC command and is passed the text
entered with the command. The following sample code will accept a text string with comma delimiters
that will separate the text into individual lines.

function onPassThrough(text) {
var commands = String(text).split(",");
for (text in commands) {
writeBlock(commands[text]);

ks
¥

Output Lines of Codes/Text Separated by Commands Using the Pass through Manual NC Command

Like the Action Manual NC command, you can setup a Template to use with the Pass through command
if you find yourself needing to output the same codes in multiple instances.

6 Debugging

6.1 Overview

The first thing to note when debugging is that there is not an interactive debugger associated with the
Autodesk CAM post processors. This means that all debugging information must be output using
settings within the post and with explicit writes. This section describes different methods you can use
when debugging your post.

You can also use the HSM Post Processor Editor to aid in debugging your program as described in the
Running/Debugging the Post section of this manual

6.2 The dump.cps Post Processor

The dump.cps post processor will process an intermediate CNC file and output a file that contains all of
the information passed from HSM to the post processor. The output file has a file extension of .dmp.
The contents of the dump file will show the settings of all parameter values and will list the entry
functions called along the arguments passed to the function and any settings that apply to that function.
The dump.cps output can be of tremendous value when developing and debugging a post processor.

342: onParameter(‘dwell’, 0)
344: onParameter(‘incrementalDepth’, 0.03937007874015748)
346: onParameter(‘incrementalDepthReduction’, 0.003937007932681737)

Debugging 6-184
v4a AUTODESK CAM Post Processor Guide 8/8/23

348: onParameter(‘'minimumIncrementalDepth’, 0.01968503937007874)
350: onParameter(‘accumulatedDepth’, 5)
352: onParameter(‘chipBreakDistance’, 0.004023600105694899)
354: onMovement(MOVEMENT_CUTTING /*cutting*/)
354: onCycle()
cycleType="chip-breaking'
cycle.clearance=123456
cycle.retract=0.19685039370078738
cycle.stock=0
cycle.depth=0.810440544068344
cycle.feedrate=15.748000257597194
cycle.retractFeedrate=39.370100366787646
cycle.plungeFeedrate=15.748000257597194
cycle.dwell=0
cycle.incrementalDepth=0.03937007874015748
cycle.incrementalDepthReduction=0.003937007932681737
cycle.minimumincrementalDepth=0.01968503937007874
cycle.accumulatedDepth=5
cycle.chipBreakDistance=0.004023600105694899
354: onCyclePoint(-1.25, 0.4999999924907534, -0.810440544068344)
355: onCyclePoint(1.25, 0.4999999924907534, -0.810440544068344)
356: onCycleEnd()

Sample dump.cps Output

6.3 Debugging using Post Processor Settings

There are variables available to the developer that control the output of debugging information. This
section contains a description of these variables.

6.3.1 debugMode
| debugMode = true;

Setting the debugMode variable to true enables the output of debug information from the debug
command and is typically defined at the start of the post processor.

6.3.2 setWriteInvocations

\ setWritelnvocations (value);

Arguments Description
value true outputs debug information for the entry functions.

Enabling the setWritelnvocations setting will create debug output in the NC file similar to what is output
using the dump post processor. The debug information contains the entry functions (onParameter,

Debugging 6-185
v4a AUTODESK CAM Post Processor Guide 8/8/23

onSection, etc.) called during post processing and the parameters that they are called with. This
information will be output prior to actually calling the entry function and is labeled using the 'DEBUG:
text.

IDEBUG: onRapid(-0.433735, 1.44892, 0.23622)

N190 Z0.2362

IDEBUG: onLinear(-0.433735, 1.44892, 0.0787402, 39.3701)
N195 G1 Z0.0787 F39.37

IDEBUG: onLinear(-0.433735, 1.44892, -0.5, 19.685)

N200 Z-0.5 F19.68

setWritelnvocations Output

6.3.3 setWriteStack
| setWriteStack (value);

Arguments Description
value true outputs the call stack that outputs the line to the NC file.

Enabling the setWriteStack setting displays the call stack whenever text is output to the NC file. The
call stack will consist of the IDEBUG: label, the call level, the name of the post processor, and the line
number of the function call (the function name is not included in the output).

IDEBUG: 1 rs274.cps:108
IDEBUG: 2 rs274.cps:919
IDEBUG: 3 rs274.cps:357
N125 M5

setWriteStack Output

108: writeWords2("N" + sequenceNumber, arguments);

357: onCommand(COMMAND_STOP_SPINDLE);

919: writeBlock(mFormat.format(mcode));
Post Processor Contents

6.4 Functions used with Debugging

Functions that can be used to output debug information to the log and NC files include debug, writeln,
and log. Additionally, the writeComment function present in almost all post processors can be used.

The text provided to the debug functions can contain operations and follow the same rules as defining a
string variable in JavaScript. You can also specify vectors or matrixes and these will be properly
formatted for output. For example,

Debugging 6-186
v4a AUTODESK CAM Post Processor Guide 8/8/23

var x = 3;

debug("The value of x is " + X);

For floating point values you may want to create a format that limits the number of digits to right of the
decimal point, as some numbers can be quite long when output.

var X = 3;

var numberFormat = createFormat({decimals:4});

debug("The value of x is " + numberFormat.format(x));

When writing output debug information to the log and/or NC files it is recommended that you precede
the debug text with a fixed string, such as "DEBUG — ", so that it is easily discernable from other output.

6.4.1 debug
| debug (text);
Arguments Description
text Outputs text to the log file when debugMode is set to true.

The debug function outputs the provided text message to the log file only when the debugMode variable
is set to true. The text is output exactly as provided, without any designation that the output was
generated by the debug function.

6.4.2 log
| log(text);
Arguments Description
text Outputs text to the log file.

The log function outputs the text to the log file. It is similar to the debug function, but does not rely on

the debugMode setting.

6.4.3 writeln

| writeln(text);

Arguments Description
text Outputs text to the NC file.

Debugging 6-187
4 AUTODESK cAM Post Processor Guide 8/8/23

The writeln function outputs the text to the NC file. It is used extensively in post processors to output
valid data to the NC file and not just debug text.

6.4.4 writeComment

| writtComment(text);

Arguments Description
text Outputs text to the NC file as a comment.

The writeComment function is defined in the post processor and is used to output comments to the
output NC file. It is described in the onComment section of this manual.

6.4.5 writeDebug
\ function writeDebug(text)

Arguments Description
text Outputs text to the NC and log files.

The writeDebug function is not typically present in the generic post processors. You can create one to
handle the output of debug information to both the log file and NC file so that if the post processor either
fails or runs successfully you would still see the debug output.

function writeDebug(text) {
if (true) { // can use the global setting ‘debugMode’ instead
writeln("DEBUG - " + text); // can use 'writtComment' instead
log("DEBUG - " + text); // can use 'debug’ instead

¥
¥

Sample writeDebug Function

7 Multi-Axis Post Processors

7.1 Adding Basic Multi-Axis Capabilities

Adding multi-axis capabilities to a post processor can be rather straight forward or difficult depending
on the situation. This chapter will cover the basics and the more complex aspects of multi-axis support,
such as adjusting points for a head, inverse time feedrates, etc.

The generic RS-274D Sample Multi-axis Post Processor is available to use as a sample for
implementing multi-axis support in any post processor. It supports CAM defined and hardcoded
Machine Configurations. You can use this post processor for testing rotary axes configurations and for
copying functionality into your custom post processor.

Multi-Axis Post Processors 7-188
v4a AUTODESK CAM Post Processor Guide 8/8/23

Please note that support for 3+2 operations is not handled here, except for the setup of the machine.
Refer to the Work Plane section in the onSection chapter for a description on how to handle 3+2
operations.

7.1.1Create the Rotary Axes Formats

The output formats for the rotary axes must first be defined. In existing multi-axis posts and posts that
contain the skeleton structure of multi-axis support these codes should already be defined. You should
add (or verify that they already exist) the following definitions at the top of the post processor in the
same area that all other formats are defined.

var abcFormat = createFormat({decimals:3, forceDecimal:true, scale:DEG});

var aOutput = createVariable({prefix:"A"}, abcFormat);
var bOutput = createVariable({prefix:"B"}, abcFormat);
var cOutput = createVariable({prefix:"C"}, abcFormat);
Define the Rotary Axes Formats

The scale:DEG parameter specifies that the rotary axes angles will be output in degrees. If you require
the output to be in radians, then omit the scale setting.

7.1.2 The Machine Configuration Settings and Functions

The machine configuration and the associated settings are above the onOpen function and define and
activate the machine configuration in the post processor. If your post processor does not have this code,
or it uses the older method of defining a machine configuration in onOpen, then you should copy this
code from the RS-274D Sample Multi-axis post processor into your post. All lines between and
including the following lines should be copied.

/I Start of machine configuration logic

// End of machine configuration logic
Copy this Code to your Custom Post Processor

You will also need to add the following code to the top of the onOpen function to call the machine
configuration functions.

function onOpen() {
/I define and enable machine configuration
receivedMachineConfiguration = machineConfiguration.isReceived();
if (typeof defineMachine == "function") {
defineMachine(); // hardcoded machine configuration
}

activateMachine(); // enable the machine optimizations and settings
Copy this Code to the Top of the onOpen Function

The variables at the top of the machine configuration code control certain aspects of multi-axis logic
within the post processor.

Multi-Axis Post Processors 7-189
v4a AUTODESK CAM Post Processor Guide 8/8/23

/ Start of machine configuration logic
var compensateToolLength = false; // add the tool length to the pivot distance for nonTCP rotary heads

Variable Description

compensateToolLength | This variable is only used for rotary head configurations that do not support
TCP. When it is enabled, the body length of the tool (tool body length) will
be added to the pivot distance. Rotary head configurations are discussed in

detail in the Adjusting the Points for Offset Rotary Axes section.
Multi-axis Settings

7.1.3Creating a Hardcoded Multi-Axis Machine Configuration
You can use a Machine Configuration in the CAM system to define the rotary axis kinematics of the
machine or it can be hardcoded in the post processor. This section describes how you would hardcode
the machine configuration inside of the post processor script.

The hardcoded machine configuration can be found in the defineMachine function.It includes all
applicable settings that are found in the Machine Configuration and contains the following sections of
code.

function defineMachine() {
/I if (*receivedMachineConfiguration) { / CAM machine configuration takes precedence
if (true) {// hardcoded machine configuration takes precedence
/I define machine kinematics
var useTCP = false; // TCP support
var aAxis = createAxis({coordinate: X, table:true, axis:[1, 0, 0], offset:[0, 0, 0], range:[-120, 30],
cyclic:false, preference:-1, tcp:useTCP});
var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], offset:[0, 0, 0], cyclic:true, reset:0,
tcp:useTCP});
machineConfiguration = new MachineConfiguration(aAxis, CAXis);
Define Machine Kinematics

The rotary axes can be customized to match the machine configuration using the parameters in the
createAxis command.

Parameter | Description

table Set to true when the rotary axis is a table, or false if it is a head. The default if not
specified is true.
axis Specifies the rotational axis of the rotary axis in the format of a vector, i.e. [0, 0, 1].

This vector does not have to be orthogonal to a major plane, for example it could be [0,
.7071,.7071]. The direction of the rotary axes are based on the righthand rule for tables
and the lefthand rule for heads. You can change direction of the axis by supplying a
vector pointing in the opposite direction, i.e. [0, 0, -1]. This parameter is required.

Multi-Axis Post Processors 7-190
v4a AUTODESK CAM Post Processor Guide 8/8/23

Parameter | Description

offset Defines the rotational position of the axis in the format of a coordinate, i.e. [0, 0, 0].
For machines that support TCP the offset parameter can be omitted. The offset values
for tables are based on the part origin defined in the Setup. The offset value for the
rider or primary rotary head is based on the distance from the tool stop (or spindle face)
position to the pivot point of the rotary head. The offset value for the carrier rotary
head (when the machine has a head/head configuration) is based on the pivot point of
the rider axis to the pivot point of the carrier axis. The default is [0, 0, 0].

coordinate | Defines the coordinate of the axis, either X, Y, or Z. You will notice a number used in
most of the generic posts, in this case 0=X, 1=Y, and 2=Z. Either specification is
acceptable input. This parameter is required.

cyclic Defines whether the axis is cyclic (continuous) in nature, in that the output will always
be within the range specified by the range parameter. Cyclic axes will never cause the
onRewindFunction to be called, since they are continuous in nature and do not have
limits. The range applies specifically to output values for this axis. The default is false.

tcp Defines whether the control supports Tool Center Point programming for this axis.
Each axis can have its own setting. The default is true.
range Defines the upper and lower limits of the rotary axis using the format [lower, upper]. If

the rotary axis is cyclic, then the range sets the limits of the output values for this axis,
if it is not cyclic the range is the actual physical limits of the machine.

preference | Specifies the preferred angle direction at the beginning of an operation. -1 = choose the
negative angle, 0 = no preference, and 1 = choose the positive angle. The default is O.
reset Defines the starting position of the axis for a new operation and when the rotary axes
need to be rewound and reconfigured due to exceeding the limits. 0 = remember the
position from previous section, 1 = reset to 0 at start of operation, 2 = reset to 0 at
automatic rewind, 3 = reset to O at start of operation and at automatic rewind. This
parameter is implemented since R42225 of the post engine.

resolution | Specifies the resolution in degrees of the rotational actuator. Typically, this will be set
to the number of digits to the right of the decimal as specified in the createFormat call
for the rotary axes. The default is O.

create Axis Parameters

The order in which the axes are defined in the new MachineConfiguration call is important and must use
the following order.

Order | Rotary Axis
1 Rotary head rider
2 Rotary head carrier
3 Rotary table carrier

4 Rotary table rider
machineConfiguration Rotary Axis Order

/' 4 axis setup, A rotates around X, direction is positive
var aAxis = createAxis({coordinate: X, table:true, axis:[1, 0, 0], cyclic:true, tcp:false, preference:1});

Multi-Axis Post Processors 7-191
v4a AUTODESK CAM Post Processor Guide 8/8/23

machineConfiguration = new MachineConfiguration(aAxis);

Il 4 axis setup, A rotates around X, direction is negative

var aAxis = createAxis({coordinate: X, table:true, axis:[-1, 0, 0], cyclic:true, tcp:false,, preference:1});
machineConfiguration = new MachineConfiguration(aAxis);
setMachineConfiguration(machineConfiguration);

/I'5 axis setup, B rotates around Y, C rotates around Z, directions both positive

var bAxis = createAxis({coordinate:Y, table:true, axis:[0, 1, 0], range:[-120,120], tcp:true,
preference:1});

var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], cyclic:true, tcp:true});

machineConfiguration = new MachineConfiguration(bAxis, CAXis);

setMachineConfiguration(machineConfiguration);

/I Same table/table setup, without TCP, top and center of C-axis is defined as the origin

var bAXxis = createAxis({coordinate:Y, table:true, axis:[0, 1, 0], offset:0, 0, -12.5], range:[-120,120],
tcp:false, preference:1});

var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], cyclic:true, tcp:false});

machineConfiguration = new MachineConfiguration(bAxis, CAXIs);

setMachineConfiguration(machineConfiguration);

/I 5-axis head/head setup without TCP

var aAxis = createAxis({coordinate: X, table:false, axis:[-1, 0, 0], offset:[0, 0, 8.75], range:[-120,120],
tcp:false, preference:-1});

var cAxis = createAxis({coordinate:Z, table:false, axis:[0, 0, 1], cyclic:false, range:[-180, 180],
tcp:false});

machineConfiguration = new MachineConfiguration(aAxis, CAXis);

setMachineConfiguration(machineConfiguration);
Sample Rotary Configurations

The determination if the output coordinates should be at the pivot point of the rotary heads or the virtual
tooltip position (as if the tool is vertical) is decided by the setVirtualTooltip function. This setting is
only applied to rotary heads that do not support TCP. The virtual tooltip position is described in the
Adjusting the Points for Offset Rotary Axes section.

/l multiaxis settings
if (machineConfiguration.isHeadConfiguration()) {
machineConfiguration.setVirtualTooltip(false); // translate the pivot point to the virtual tool tip
for nonTCP rotary heads

}

Virtual Tooltip Setting

It is possible on some machine configurations that the limits of the rotary axes will be exceeded and the
tool has to be retracted and the rotary axes repositioned to within the limits of the machine. The
following code defines the required settings for the retract/reconfigure logic. It is described in the
Rewinding of the Rotary Axes when Limits are Reached section.

Multi-Axis Post Processors 7-192
v4a AUTODESK CAM Post Processor Guide 8/8/23

I retract / reconfigure
var performRewinds = false; // set to true to enable the retract/reconfigure logic
if (performRewinds) {
machineConfiguration.enableMachineRewinds(); // enables the retract/reconfigure logic
safeRetractDistance = (unit == IN) ? 1 : 25; // additional distance to retract out of stock, can be
overridden with a property
safeRetractFeed = (unit == IN) ? 20 : 500; // retract feed rate
safePlungeFeed = (unit == IN) ? 10 : 250; // plunge feed rate
machineConfiguration.setSafeRetractDistance(safeRetractDistance);
machineConfiguration.setSafeRetractFeedrate(safeRetractFeed);
machineConfiguration.setSafePlungeFeedrate(safePlungeFeed);
var stockExpansion = new Vector(toPreciseUnit(0.1, IN), toPreciseUnit(0.1, IN),
toPreciseUnit(0.1, IN)); // expand stock XYZ values
machineConfiguration.setRewindStockExpansion(stockExpansion);

ks

Retract/Reconfigure Settings

Multi-axis machines that do not support TCP will usually require inverse time or degree per minute
feedrates. The mulit-axis feedrate format is defined in the following section of code. Multi-axis
feedrates are discussed in more detail in the Multi-Axis Feedrates section.

/I multi-axis feedrates
if (machineConfiguration.isMultiAxisConfiguration()) {
machineConfiguration.setMultiAxisFeedrate(
useTCP ? FEED_FPM : getProperty("useDPMFeeds") ? FEED_DPM :
FEED_INVERSE_TIME,
9999.99, // maximum output value for inverse time feed rates
getProperty("useDPMFeeds") ? DPM_COMBINATION : INVERSE_MINUTES, //
INVERSE_MINUTES/INVERSE_SECONDS or DPM_COMBINATION/DPM_STANDARD
0.5, // tolerance to determine when the DPM feed has changed
1.0 // ratio of rotary accuracy to linear accuracy for DPM calculations
);
}

Multi-Axis Feedrates Definition

The home position of the machine can be defined in the defineMachine function. The home positions
are used in the writeRetract function when positioning the machine in machine coordinates (G53) or
WCS coordinates (G00).

/* home positions */

/l machineConfiguration.setHomePosition X (toPreciseUnit(0, IN));

// machineConfiguration.setHomePositionY (toPreciseUnit(0, IN));

/I machineConfiguration.setRetractPlane(toPreciseUnit(0, IN));
Defining the Machine Home Coordinates

Multi-Axis Post Processors 7-193
v4a AUTODESK CAM Post Processor Guide 8/8/23

Finally, the post processor engine needs to be informed of the hardcoded machine configuration.

I/ define the machine configuration
setMachineConfiguration(machineConfiguration); // inform post kernel of hardcoded machine
configuration
if (receivedMachineConfiguration) {
warning(localize("The provided CAM machine configuration is overwritten by the
postprocessor.”));
receivedMachineConfiguration = false; // CAM provided machine configuration is overwritten

¥

Informing the Post Engine of the Hardcoded Machine Configuration

7.1.4 Calculating the Rotary Angles

Once a Machine Configuration is defined the rotary axes angles need to be calculated and the tool end
point needs to be adjusted for the rotary axes if TCP is not supported. This holds true for CAM and
hardcoded Machine Configurations. This is handled in the activateMachine function and should not
have to be modified. It is described here for reference purposes only.

The optimizeMachineAngles2 function calculates the rotary axes angles and adjusts the XYZ coordinates
for the rotary axes if TCP is not supported. The following values are passed to the
optimizeMachineAngles2 function.

Value Description

OPTIMIZE_NONE Don't adjust the coordinates for the rotary axes. Used for TCP mode.
OPTIMIZE_BOTH Adjust the coordinates for the rotary axes. For rotary heads that do
not support TCP it is possible that the tool length has to be added to
the tool end point coordinates. This scenario is discussed further in
the Adjusting the Points for Rotary Heads section of this chapter.
OPTIMIZE_TABLES | Adjust the coordinates for rotary tables. No adjustment will be made
for heads.

OPTIMIZE_HEADS | Adjust the coordinates for rotary heads. No adjustment will be made
for tables.

OPTIMIZE_AXIS Adjust the coordinates for the rotary axes based on the TCP setting
associated with the defined axes. This is the required setting for
CAM defined Machine Configurations and hardcoded Machine
Configuration that define the tcp variable in the createAxis

definitions.
Settings for Adjusting the Input Coordinates for the Rotary Axes

Rotary head adjustments that require that the tool length be added to the offset distance of the axis
cannot be adjusted using the optimizeMachineAngles2 function, since the tool length will vary from tool
to tool. Instead, the Section function optimizeMachineAnglesByMachine is called for each section. This
is also true for post processors that may change the Machine Configuration during the processing of the

Multi-Axis Post Processors 7-194
v4a AUTODESK CAM Post Processor Guide 8/8/23

operations. Following is the generic code used in the activateMachine function that is used to calculate
the rotary axes angles and adjust the tool end point coordinates.

/I calculate the ABC angles and adjust the points for multi-axis operations
/l rotary heads may require the tool length be added to the pivot length
/I so we need to optimize each section individually
if (machineConfiguration.isHeadConfiguration() && compensateToolLength) {
for (var i = 0; i < getNumberOfSections(); ++i) {
var section = getSection(i);
if (section.isMultiAxis()) {
machineConfiguration.setToolLength(getBodyLength(section.getTool())); // define the tool
length for head adjustments
section.optimizeMachineAnglesByMachine(machineConfiguration, OPTIMIZE_AXIS);
}
}

} else { // tables and rotary heads with TCP support can be optimized with a single call
optimizeMachineAngles2(OPTIMIZE_AXIS);

¥

Rotary Axes Calculations and Coordinate Transformation

If the call to calculate the rotary axes and adjust the input coordinates is not made then the tool end point
and tool axis vector will be passed to the onRapid5D and onLinear5D multi-axis functions.

7.1.50utput Initial Rotary Position

A function should be defined that outputs the rotary axis position in a block by themselves. In legacy
posts this code is contained inline can be found in multiple places within the post.

[** Positions the rotary axes in rapid mode */
function positionABC(abc, force) {
if (typeof unwindABC == "function™) {
unwindABC(abc, false);
}
if (force) {
forceABC();
}
var a = aOutput.format(abc.x);
var b = bOutput.format(abc.y);
var ¢ = cOutput.format(abc.z);
if (al[blc){
if (retracted) {
if (typeof moveToSafeRetractPosition == "function") {
moveToSafeRetractPosition();

}else {
writeRetract(Z);

¥

Multi-Axis Post Processors 7-195
v4a AUTODESK CAM Post Processor Guide 8/8/23

}
onCommand(COMMAND_UNLOCK_MULTI_AXIS);

gMotionModal.reset();
writeBlock(gMotionModal.format(0), a, b, c);
setCurrentABC(abc); // required for machine simulation
}
}

Output Initial Rotary Axes Positions

The initial rotary axes positions must be calculated prior calling the positionABC function. The function
getinitialToolAxisABC() is used to obtain the initial rotary axes positions for multi-axis operations.

if (currentSection.isMultiAxis()) {
var abc = section.getlnitialToolAxisSABC();
positionABC(abc, true);

¥

Calculate Initial Rotary Angles for a Multi-axis Operation

7.1.6 Create the onRapid5D and onLinear5D Functions

Now that you have the machine defined you will need to verify that the onRapid5D and onLinear5D
functions are present. These are the functions that will process the tool path generated by multi-axis
operations. If your post already has these functions defined, then great you should be (almost) ready to
go, if not then add the following functions to your post.

function onRapid5D (_X, Yy, z, _a,_b, ¢){
if ("currentSection.isOptimizedForMachine()) {
error(localize("This post configuration has not been customized for 5-axis simultaneous
toolpath."));
return;
}
if (pendingRadiusCompensation >= 0) {
error(localize("Radius compensation mode cannot be changed at rapid traversal."));
return;
}
var x = xOutput.format(_x);
var y = yOutput.format(_y);
var z = zOutput.format(_z);
var a = aOutput.format(_a);
var b = bOutput.format(_b);
var ¢ = cOutput.format(_c);
if(llyllzllalibllc){
writeBlock(gMotionModal.format(0), x, y, z, a, b, ¢);
feedOutput.reset();

ks
¥

Multi-Axis Post Processors 7-196
v4a AUTODESK CAM Post Processor Guide 8/8/23

onRapid Function

function onLinear5D (_Xx, _y, z, _a, b, c, feed, feedMode) {
if (TcurrentSection.isOptimizedForMachine()) {
error(localize("This post configuration has not been customized for 5-axis simultaneous
toolpath.™));
return;
}
if (pendingRadiusCompensation >= 0) {
error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));
return;
}
var x = xOutput.format(_x);
var y = yOutput.format(_y);
var z = zOutput.format(_z);
var a = aOutput.format(_a);
var b = bOutput.format(_b);
var ¢ = cOutput.format(_c);
var f = feedOutput.format(_feed);

/I get feedrate number

var fMode = feedMode == FEED_INVERSE_TIME ? 93 : 94;

var f = feedMode == FEED_INVERSE_TIME ? inverseTimeQOutput.format(feed) :
feedOutput.format(feed);

if(xllyllzllallbllc){
writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), x, v, z, a, b, c, f);
}elseif (f) {
if (getNextRecord().isMotion()) { // try not to output feed without motion
feedOutput.reset(); // force feed on next line
}else {
writeBlock(gfFeedModeModal.format(fMode), MotionModal.format(1), f);
}
}
}

onLinear5D Function

Both of these functions as presented are basic in nature and the requirements for your machine may
require some modification.

7.1.7Multi-Axis Common Functions

There are functions that are useful when developing a post processor for a multi-axis machine. These
functions are used to determine if the rotary axes are configured, the beginning and ending tool axis or
rotary axes positions for an operation, and control the flow of the multi-axis logic.

Multi-Axis Post Processors 7-197
v4a AUTODESK CAM Post Processor Guide 8/8/23

Function

Description

machineConfiguration.isMultiAxisConfiguration()

Returns true if a machine configuration containing rotary
axes has been defined. It is still possible to create output
for some multi-axis machines if the rotary axes have not
been defined, by outputting the tool axis vector instead of
the rotary axes positions or by using Euler angles for 3+2
operations.

machineConfiguration.get ABCByPreference
(matrix, current, controllingAxis, type, options)

Returns the preferred rotary axes angles for the provided
matrix. This matrix is usually the Work Plane matrix
(currentSection.workPlane). getABCByPreference is
described in further detail in the Work Plane — 3+2
Operations section.

section.isOptimizedForMachine()

Returns true if the rotary axes angles have been calculated
for the section.

section.isMultiAxis()

Returns true if the operation specified by section is a
multi-axis operation.

section.getGloballnitial Tool Axis()

Returns the initial tool axis for the provided section as a
Vector. Usually used at the start of an operation using the
currentSection variable.

section.getlnitial Tool AXisABC()

Returns the initial rotary axes angles for the provided
section as a Vector. Usually used at the start of an
operation using the currentSection variable. An error will
be generated if a machine configuration containing rotary
axes has not been defined.

section.getGlobalFinal Tool Axis()

Returns the final tool axis for the provided section as a
Vector. Usually used at the start of an operation using
getPreviousSection().

section.getFinal Tool AxisABC()

Returns the final rotary axes angles for the provided
section as a Vector. Usually used at the start of an
operation using getPreviousSection(). An error will be
generated if a machine configuration containing rotary
axes has not been defined.

section.getOptimized TCPMode()

Returns the mode used to adjust the output coordinates for
the rotary axes for this section. The different modes are
listed in the Calculating the Rotary Axes section in this
chapter.

getCurrentDirection()

Returns the current rotary axes angles as a Vector in a
multi-axis operation. It will return the Work Plane
forward vector when in a 3-axis or 3+2 operation.

is3D() Returns true if the entire program is a 3-axis operation
with no multi-axis operations. Returns false if even one
operation is a 3+2 or multi-axis operation.

setCurrentABC(abc) Sets the current ABC position in the post engine. This

function should be called whenever the rotary angles are
calculated and output within the post processor.

Multi-Axis Common Functions

Multi-Axis Post Processors 7-198

4 AUTODESK cAM Post Processor Guide 8/8/23

7.2 Output of Continuous Rotary Axis on a Rotary Scale

There are two different styles that are commonly used for rotary axes output, using a linear scale or a
rotary scale. A linear scale is the more standard case in today's machines and will move on a
progressive scale similar to a linear axis output. For example, a value of 720 degrees will move the axis
two revolutions from 0 degrees. A linear scale is almost always used with a non-continuous axes and
can be used with a continuous rotary axis.

A rotary scale on the other hand typically outputs the rotary angle positions between 0 and 360 degrees,
usually with the sign + specifying the direction. If a sign is not required and the control will always take
the shortest route, then it is pretty straight forward to output the rotary axis on a rotary scale, simply
define it as a cyclic axis with a range of 0 to 360 degrees.

\ var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], cyclic:true, range:[0, 360]}); \
Create Rotary Axis Using a Rotary Scale. Machine will Take the Shortest Route

For controls that require a sign to designate the direction the rotary axis will move, you will need to
define the rotary axis on a linear scale. Yes, it sounds counterintuitive, but the output variable will
handle converting the linear scale value to a signed rotary scale value.

| var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], cyclic:true}); |
Create Rotary Axis Using a Linear Scale when Output Using a Rotary Scale

The createOutputVariable function can be used to output a directional value for a rotary axis on a rotary
scale.

var aOutput = createOutputVariable({prefix:"A", type:TYPE_DIRECTIONAL, cyclicLimit:360,
cyclicSign:1}, aFormat);

Create the Output Variable using a Rotary Scale

There are no more modifications needed.

7.3 Adjusting the Points for Offset Rotary Axes

The post processor kernel has support for offset tables and heads when TCP is not supported on the
machine. The offsets from the part origin to the rotary center(s) must be defined when the axis is
created. This is done using the offset parameter in createAxis.

var aAxis = createAxis({coordinate: X, table:false, axis:[-1, 0, 0], offset:[0, 0, 8.75], range:[-120,120],
tcp:false, preference:-1});

Create an Offset Rotary Head

It is important to know how the offsets are applied to each style of rotary axis. For rotary heads
remember the head rider axis is defined first and then the head carrier axis. When the carrier and rider
heads share a common pivot point, then only the offset for the rider axis needs to be defined. This offset
is defined from the tool stop position to the pivot point. When the pivot points are different, the carrier
Multi-Axis Post Processors 7-199

4 AUTODESK cAM Post Processor Guide 8/8/23

axis offset is defined as the offset from the rider pivot point. Most machines will use a common pivot
point for both rotary axes.

Rotary Axis Rotary Axis

Rotary head rider Distance from tool stop to pivot point

Rotary head carrier | Distance from Head Rider pivot point to Head
Carrier pivot point

Rotary table carrier | Distance from part origin to center of table

Rotary table rider Distance from part origin to center of table
Non-TCP Rotary Axis Offsets

A-axis Pivot

Tool Stop

Rotary Head Pivot References

When defining an offset rotary table, defining the offset is all that is needed before the rotary angles and
transformed coordinates are calculated.

For offset heads on machines that do not support TCP there are a couple of more function calls that may
be needed.

It is possible that the tool length needs to be added to the offset of the head rider axis defined in the
createAxis function. On small hobbyist machines it could be that the tool will always be the same length
and can then be defined as part of the offset. On machines that use different tool lengths you will need
to inform the post engine of the tool length to be added to the pivot distance prior to calculating the

Multi-Axis Post Processors 7-200
#4 AUTODESK cAM Post Processor Guide 8/8/23

offset coordinates for the section. This is done by calling the machineConfiguration.setToolLength
function with the length of the tool from the tool end point to the tool stop position used to define the
offset for the head.

Tool Stop

Tool Length

!

Tool Length Definition

The post processor will typically use the Overall length of the tool as defined in the CAM system as the
tool length.

Geometry

Diameter 2in

Shaft diameter L3748 1n
Overall length 5.90551 in

Length below hold.. 1.9685in

Shoulder length 0.7874 in
Flute length 0.19685 in
Corner radius 0in

Taper angle D degrees

Overall Length Defines the Tool Length

The output of the offset head coordinates can either be at the pivot point of the axis or the tool end point
when the rotary axes are at 0 degrees (the tool is vertical). You would normally setup the machine with
the tool tip at Z0. In this case the output coordinates will be at the virtual tool tip, meaning that the
coordinates will be where the tool tip position would be when the rotary axes are at 0 degrees, even
when the axes are tilted.

Multi-Axis Post Processors 7-201
v4a AUTODESK CAM Post Processor Guide 8/8/23

Actual Tool Position

Virtual Tool Position

Virtual Tool Tip

The machineConfiguration.setVirtualTooltip function is used to define whether the output coordinates
are at the pivot point or at the virtual tool tip in a hardcoded machine configuration. In either case it is
important that the proper offset distance and tool length are provided in order for the correct XYZ
coordinates to be calculated. The activateMachine function handles the calculation of offset tables and
heads based on the definition of each rotary axes and the following settings.

7.4 Calculation of the Multi-Axis Tool Position

It is possible to manually calculate the machine linear position based on the tool end point position or
the tool end point position based on the machine linear position based on the rotary axis positions. The
machineConfiguration.getOptimizedPosition function performs both conversions.

\ machineConfiguration.getOptimizedPosition(current, abc, tcpType, optimizeType, force) \
Adjust a Coordinate for the Rotary Axis Positions

Parameter Variable Type | Description

current Vector Either the tool tip or machine XYZ position based on tcpType.
abc Vector The rotary axis positions.

tcpType Value Type of conversion.

optimizeType Value Type of optimization.

Multi-Axis Post Processors 7-202
4 AUTODESK CAM Post Processor Guide 8/8/23

Parameter Variable Type | Description
force Boolean Set to true to adjust the values even if TCP is in effect. Valid

for TCP_XYZ OPTIMIZED and TCP TOOL OPTIMIZED.
getOptimizedPosition Parameters

Value Description Current Input Value
TCP_XYZ Converts the tool tip to the machine | Tool tip

XYZ position.
TCP_TOOL Converts the machine XYZ position | Machine XYZ

to the tool tip position.
TCP_XYZ_OPTIMIZED | Converts the tool tip to the machine | Position as supplied to
XYZ position only when the input onRapid5D and onLinear5D.
coordinates are adjusted for the rotary
axes (non-TCP).
TCP_TOOL_OPTIMIZED | Converts the machine XYZ position | Position as supplied to
to the tool tip position only when the | onRapid5D and onLinear5D.
input coordinates are adjusted for the
rotary axes (non-TCP).

tcpType Values

Value Description

OPTIMIZE_BOTH Adjust the coordinates for both tables and heads.
OPTIMIZE _TABLES Adjust the coordinates for rotary tables only.
OPTIMIZE_HEADS Adjust the coordinates for rotary heads only.

optimizeType Values

/I calculate the machine XYZ position from the tool tip position
var xyz = machineConfiguration.getOptimizedPosition(toolTip, abc, TCP_XYZ, OPTIMIZE_BOTH,
false);

function onRapid5D(_x, Yy, z, a, b, ¢){
/I calculate the tool tip position
Il if the input coordinates are not adjusted for the rotary axes, the output coordinate will be
/l the same as the input coordinate
var toolTip = machineConfiguration.getOptimizedPosition(
new Vector(_X, Yy, 2),
new Vector(_a, b, c),
TCP_TOOL_OPTIMIZED, OPTIMIZE_HEAD,
false);

Sample Coordinate Conversions

7.5 Handling the Singularity Issue in the Post Processor
The post processor kernel handles the problem when the tool axis direction approaches the singularity of
the machine. The singularity is defined as the tool axis orientation that is perpendicular to a rotary axis,

Multi-Axis Post Processors 7-203
v4a AUTODESK CAM Post Processor Guide 8/8/23

either a table or head. When the tool direction approaches the singularity, you may notice that the rotary
axis can start to swing violently even if there is only a small deviation in the tool axis. If you can
imagine a machine with an A-axis trunnion carrying a C-axis table and the tool axis is 0, sin(.001),
cos(.001). This causes the output rotary positions to be A.001 CO. Now if the rotary axis changes to 0,
sin(.001), cos(.001), a change of less than .002 degrees you will notice that the rotary positions to be
A.001 C90. You can see where a very small directional change in the tool axis (<.002) will cause a 90-
degree change in the C-axis.

The singularity logic in the kernel will massage the tool axis direction to keep the tool within tolerance
and minimize the rotary axis movement in these cases. A safeguard that linearizes the moves around the
singularity has also been implemented. This linearization will add tool locations as necessary to keep
the tool endpoint within tolerance of the part.

e e e

Tool Direction Approaching the Singularity

There are settings in the post processor that manage how the singularity issue is handled. These settings
are defined using the following command.

\ machineConfiguration.setSingularity(adjust, method, cone, angle, tolerance, linearizationTolerance) \

Variable Description

adjust Set to true to enable singularity optimization within the post processor.

Singularity optimization includes the ability to adjust the tool axis to

minimize singularity issues (large rotary axis movement when the tool axis

approaches perpendicularity to a rotary axis) and the linearization of the
Multi-Axis Post Processors 7-204

4 AUTODESK cAM Post Processor Guide 8/8/23

Variable Description

moves around the singularity to keep the tool endpoint within tolerance. The
default is true.

method When set to SINGULARITY_LINEARIZE_OFF it disables the linearization
of the moves to keep the tool endpoint within tolerance of the programmed
tool path around the singularity. SINGULARITY_LINEARIZE_ROTARY
will linearize the moves around the singularity. Additional points are added
to keep the tool within the specified tolerance and is optimized for revolved
movement as if the tool were moving around a cylinder or other revolved
feature. SINGULARITY_LINEARIZE_LINEAR will also add additional
points to keep the tool within tolerance, but will keep the tool endpoint
moving in a straight line. The default is
SINGULARITY_LINEARIZE_ROTARY.

cone Specifies the angular distance that the tool axis vector must be within in
reference to the singularity point before the singularity logic is activated. This
is usually a small value (less than 5 degrees), since the further away the tool
axis is from the singularity, the less noticeable the fluctuations in the rotary
axes will be and the less benefit this feature will provide. This parameter is
specified in radians and the default value is .052 (3 degrees).

angle The minimum angular delta movement that the rotary axes must move prior
to considering adjusting the tool axis vector for singularity optimization. This
limit is used to keep from adjusting the tool axis vector when the rotary axes
do not fluctuate greatly. This is typically set to a value of 10 degrees or more.
This parameter is in radians and the default value is .175 (10 degrees).
tolerance The tolerance value used to keep the tool within tolerance when the tool axis
is adjusted to minimize rotary axis movement around the singularity. The
default value is .04mm (.0015in).

linearizationTolerance | The tolerance value to use when additional points are added to keep the tool
endpoint within tolerance of the programmed move when the tool axis is near
the singularity. The default value is .04mm (.0015in).

The default settings are valid for most tool paths, but this command allows for some tweaking in special
cases where you want to fine tune the output.

7.6 Rewinding of the Rotary Axes when Limits are Reached

The post processor kernel will select the starting angles of the rotary axes based on the best possible
solution to avoid rewind situations when one of the rotary axes crosses its limits. This is accomplished
by scanning the entire operation to see if a rewind of the rotary axes is required due to limit violations
and if so adjusting the starting angles of the rotary axes to see if the rewind can be avoided. If a solution
to avoid the rewind cannot be found, then the solution that produces the most rotary movement prior to
requiring a rewind will be used.

The best possible solution for the rotary axes is always selected at the start of an operation and when a
rewind is required due to a rotary axis crossing the limits, the tool will always stop on the exact limit of

Multi-Axis Post Processors 7-205
v4a AUTODESK CAM Post Processor Guide 8/8/23

the machine, eliminating scenarios where a valid solution for the rewinding of the rotary axes could not
always be found.

When a rewind is required there is a group of functions that can be added to the custom post processor to
handle the actual rewinding of the affected rotary axis. This code can be easily copied into your custom
post processor and modified to suit your needs with just a little bit of effort.

One setting that is very important when defining a rotary axis is the cyclic parameter in the call to
createAxis. cyclic is considered synonymous with continuous, meaning that this axis has no limits and
will not be considered when determining if the rotary axes have to be repositioned to stay within limits.
The range specifier used in conjunction with a cyclic axis defines the output limits of a rotary axis, for
example specifying a range of [0,360] will cause all output angles for this axis to be output between 0
and 360 degrees. The range for a non-cyclic axis defines the actual physical limits of that axis on the
machine and are used to determine when a rewind is required. Please note that the physical limits of the
machine may be a numeric limit of the control instead of a physical limit, such as 9999.9999.

Another important setting is the reset parameter, which allows you to define the starting angle at the
start of an operation and after a rewind of the axes has occurred. By default, the post engine will use the
ending angle of the previous multi-axis operation. Some controls allow for the rotary axis encoder to be
reset so that the stored angle is reset to be within the 0-360 degrees without unwinding the axis. In this
case you will want to issue the proper codes to reset the axis encoder, for example G28 CO, and specify
reset:3 when you create the axis.

Now on to how you can implement the automatic rewind capabilities in your post. The bulk of the
feature is handled by the post processor kernel, but there are some variables and functions that are
required in your post. The variables used for retract/reconfigure are either defined in the CAM Machine
Configuration settings or in the defineMachine function for hardcoded machine configurations.

I retract / reconfigure

var performRewinds = false; // set to true to enable the retract/reconfigure logic

if (performRewinds) {
machineConfiguration.enableMachineRewinds(); // enables the retract/reconfigure logic
safeRetractDistance = (unit == IN) ? 1 : 25; // additional distance to retract out of stock
safeRetractFeed = (unit == IN) ? 20 : 500; // retract feed rate
safePlungeFeed = (unit == IN) ? 10 : 250; // plunge feed rate
machineConfiguration.setSafeRetractDistance(safeRetractDistance);
machineConfiguration.setSafeRetractFeedrate(safeRetractFeed);
machineConfiguration.setSafePlungeFeedrate(safePlungeFeed);
var stockExpansion = new Vector(toPreciseUnit(0.1, IN), toPreciseUnit(0.1, IN), toPreciseUnit(0.1, IN)); //

expand stock XYZ values

machineConfiguration.setRewindStockExpansion(stockExpansion);

}
Retract/Reconfigure Settings Defined in defineMachine
Variable Description
performRewinds When set to false an error will be generated when a rewind of a rotary axis
is required. Setting it to true will enable the rewind logic..

Multi-Axis Post Processors 7-206
v4a AUTODESK CAM Post Processor Guide 8/8/23

safeRetractDistance Defines the distance to be added to the retract position when the tool is
positioned past the stock material to safely remove it from the stock. If it
is set to 0, then the tool will retract to the outer stock plus the stock

expansion.
safeRetractFeed Specifies the feedrate to retract the tool prior to rewinding the rotary axis.
safePlungeFeed Specifies the feedrate to plunge the tool back into the part after rewinding
the rotary axis.
stockExpansion The tool will retract past the defined stock by default. You can expand

the defined stock on all sides by defining the stockAllowance vector,

which contains the expansion value for X, Y, and Z.
Variables that Control Tool Retraction

You will need to copy the retract/reconfigure functions from a post that supports this logic into your
post. These functions are defined in the following section of code and include the designated functions.

/I Start of onRewindMachine logic

/l End of onRewindMachine logic
Copy this Code into Your Post

Function Arguments Description

onRewindMachineEntry (none) This function is called at the start of the
automatic rewind process and allows the
user to override the default rewind logic.
Returning true from this function will
disable the rewind logic in the post engine,
while false will continue with the
rewind/reconfigure process.

onMoveToSafeRetractPosition (none) Moves the tool to a safe retract position
after retracting the tool from the part.
onRotateAxes X,¥,2,a,b,C Repositions the rotary axes to their new

location as provided by a,b,c after the tool
has been moved to its safe position.
onReturnFromSafeRetractPosition | X, y, z Repositions the linear axes to the position
of the tool when it was retracted from the

part.
Automatic Rewind Entry Functions

The onRewindMachineEntry function is used to either override or supplement the standard rewind logic.
It will simply return false when the standard rewind logic of retracting the tool, repositioning the rotary
axes, and repositioning the tool is desired. Code can be added to this function for controls that just
require the encoder to be reset or to output the new rotary axis position when the control will
automatically track the tool with the rotary axis movement. The following example resets the C-axis
encoder when it is currently at a multiple of 360 degrees and the B-axis does not change.

Multi-Axis Post Processors 7-207
v4a AUTODESK CAM Post Processor Guide 8/8/23

/** Allow user to override the onRewind logic. */
function onRewindMachineEntry(_a, b, ¢){
I reset the rotary encoder if supported to avoid large rewind
if (false) { // disabled by default
if ((abcFormat.getResultingValue(_c) == 0) && !abcFormat.areDifferent(getCurrentDirection().y,
A
writeBlock(gAbsincModal.format(91), gFormat.format(28), "C" + abcFormat.format(0));
writeBlock(gAbsincModal.format(90));
return true;

¥
¥

return false;

¥

Sample Code to Reset Encoder Instead of Rewinding C-axis

Returning a value of true designates that the onRewindMachineEntry function performed all necessary
actions to reposition the rotary axes and the retract/reposition/plunge sequence will not be performed.
Returning false will process the retract/reposition/plunge sequence normally.

The onMoveToSafeRetractPosition function controls the move to a safe position after the tool is
retracted from the part and before the rotary axes are repositioned. It will typically move to the home
position in Z and optionally in X and Y using a G28 or G53 style block. You should find similar code to
retract the tool when positioning the rotary axes for a 3+2 operation and in the onClose function, which
positions the tool at the end of the program. You should use the same logic found in these areas for the
onMoveToSafeRetractPosition function.

[** Retract to safe position before indexing rotaries. */
function onMoveToSafeRetractPosition() {
writeRetract(Z); // retract to home position
/I cancel TCP so that tool doesn't follow rotaries
if (currentSection.isMultiAxis() && operationSupportsTCP) {
disableLengthCompensation(false);

¥

if (false) { // enable to move to safe position in X & Y
writeRetract(X, Y);

ks
¥

Move to a Safe Position Prior to Repositioning Rotary Axes

The onRotateAxes function is used to position the rotary axes to their new position as calculated by the
ostengine. _a, Db, c define the new rotary axis position. X, Yy, zshould be ignored and not used.
[** Rotate axes to new position above reentry position */
function onRotateAxes(_x, vy, z, a, b, ¢){

/I position rotary axes

xQOutput.disable();

Multi-Axis Post Processors 7-208
v4a AUTODESK CAM Post Processor Guide 8/8/23

yOutput.disable();
zOutput.disable();
invokeOnRapid5D(_x, _y, z, a, b, c);
xQutput.enable();
yOutput.enable();
zOutput.enable();

Position the Rotary Axes

The onReturnFromSafeRetractPosition function controls the move back to the position of the tool at the
original retract location past the stock. This function is called after the rotary axes are repositioned.

[** Return from safe position after indexing rotaries. */
function onReturnFromSafeRetractPosition(_x, _y, z){
/[reinstate TCP / tool length compensation
if ('lengthCompensationActive) {
writeBlock(gFormat.format(getOffsetCode()), hFormat.format(tool.lengthOffset));
lengthCompensationActive = true;

}

I position in XY
forceXYZ();
xOutput.reset();
yOutput.reset();
zOutput.disable();
invokeOnRapid(_x, _y, _2);

/ position in Z
zOutput.enable();
invokeOnRapid(_x, y, 2);

Return from Safe Position after Repositioning Rotary Axes

7.7 Multi-Axis Feedrates

During multi-axis contouring moves, the machine control will typically expect the feedrate numbers to
be either in Inverse Time or some form of Degrees Per Minute. Inverse Time feedrates are simply the
inverse of the time that the move takes, i.e. 1 / movetime. If your control supports both Inverse Time
and Degrees Per Minute feedrates, it is recommended that you use Inverse Time as this is the most
accurate. Please note that if your machine supports TCP (Tool Control Point) programming, then it
probably supports direct Feed Per Minute (FPM) feedrates during multi-axis contouring moves and does
not require either Inverse Time or DPM feedrates.

Multi-axis feedrate calculations are handled by the post engine and and will work with all machine

configurations; table/table, head/head, and head/table. One capability of the multi-axis feedrate

calculation is that it considers the actual tool tip movement in reference to the rotary axes movement and
Multi-Axis Post Processors 7-209

4 AUTODESK cAM Post Processor Guide 8/8/23

not just the straight-line movement along the programmed tool tip, creating more accurate multi-axis
feedrates. In the following picture the move along the arc caused by the movement of the rotary axis
(green arc) is used in the calculation instead of the straight-line move generated by HSM (blue line).

Actual Tool Path on Machine is Used in Feedrate Calculations

Multi-axis feedrate support is handled in the CAM Machine Configuration or in the defineMachine
function for a hardcoded machine configuration.

/I multi-axis feedrates
if (machineConfiguration.isMultiAxisConfiguration()) {
machineConfiguration.setMultiAxisFeedrate(
useTCP ? FEED_FPM : getProperty("useDPMFeeds") ? FEED_DPM : FEED_INVERSE_TIME,
9999.99, // maximum output value for inverse time feed rates
getProperty("useDPMFeeds") ? DPM_COMBINATION : INVERSE_MINUTES, //
INVERSE_MINUTES/INVERSE_SECONDS or DPM_COMBINATION/DPM_STANDARD
0.5, /I tolerance to determine when the DPM feed has changed
1.0 // ratio of rotary accuracy to linear accuracy for DPM calculations

);
}
Enabling Multi-Axis Feedrates
Variable Description
feedMode FEED_INIVERSE_TIME (inverse time), FEED_DPM (degrees per
minute), or FEED FPM (programmed feedrate).

Multi-Axis Post Processors 7-210
4 AUTODESK CAM Post Processor Guide 8/8/23

maximumFeedrate Defines the maximum value that can be output for both inverse time and
degrees per minute feedrates.

feedType Multi-axis feedrate options. For inverse time feedrates, the options are
INVERSE_MINUTES or INVERSE_SECONDS, defining the units of
time to use in inverse time feedrate calculations. For DPM feedrates, then
the options are DPM_STANDARD for straight degrees per minute
calculations or DPM_COMBINATION which uses a combination of
degrees per minute and linear feed per minute (this is the most typical for
machines that want a form of DPM feedrates).

outputTolerance The tolerance for deciding whether to output a feedrate value or not. If
the feedrate value is within this tolerance of the previous feedrate value,
then it will be set to the previous value. This is used to minimize the
output of multi-axis feedrate numbers.

bpwRatio Defines the pulse weight ratio for the rotary axes when DPM feedrates are
output as a combination of linear and rotary movements. The pulse
weight is a scale factor based on the rotary axes accuracy compared to the
linear axes accuracy. For example, it should be set to .1 when the linear
axes are output on .0001 increments and the rotary axes on .001

increments.
setMultiAxisFeedrate Parameters

If Inverse Time feedrates are supported you will need to create the inverseTimeOutput variable at the top
of the post processor code and if the accuracy of the Inverse Time feedrates is different than the standard
FPM feedrate you will also need to create a new format to associate with it. The gFeedModeModal
modal variable will also need to be defined for support of G93/G94 output if it does not already exist.

var gFeedModeModal = createModal({}, gFormat); // modal group 5 // G93-94
var inverseFormat = createFormat({decimals:4, forceDecimal:true});

var inverseTimeOutput = createVariable({prefix:"F", force:true}, feedFormat);

Create inverseTimeOutput Variable

Now there are other areas of the post processor that need to be changed to support these feedrate modes.
First, the onLinear5D function must have support added to receive and output the feedrate mode and to
output the feedrate value using the correct format.

function onLinear5sD(_x, _y, z, _a, _b, c, feed, feedMode) {
if (TcurrentSection.isOptimizedForMachine()) {
error(localize("This post configuration has not been customized for 5-axis simultaneous
toolpath."));
return;

¥

/[at least one axis is required

Multi-Axis Post Processors 7-211
»4d AUTODESK CAM Post Processor Guide 8/8/23

if (pendingRadiusCompensation >= 0) {
error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));
return;

}

var X = xOutput.format(_x);

var y = yOutput.format(_y);

var z = zOutput.format(_z);

var a = aOutput.format(_a);

var b = bOutput.format(_b);

var ¢ = cOutput.format(_c);

Il get feedrate number

var fMode = feedMode == FEED_INVERSE_TIME ? 93 : 94;

var f = feedMode == FEED_INVERSE_TIME ? inverseTimeOutput.format(feed) :
feedOutput.format(feed);

if(xllylizllallbllc){
writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), x, y, z, a, b, ¢, f);
}elseif (f) {
if (getNextRecord().isMotion()) { // try not to output feed without motion
feedOutput.reset(); // force feed on next line
}else {
writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), f);
}
}

¥

onLinear5D Required Changes

You will need to reset the feedrate mode to FPM either at the end of the multi-axis operation or on a
standard 3-axis move. It is much easier to do this at the end of the section, otherwise you would have to
modify all instances that output feedrates, such as in onLinear, onCircular, onCycle, etc.

function onSectionEnd() {

if (currentSection.isMultiAxis()) {
writeBlock(gFeedModeModal.format(94)); // inverse time feed off

}

Reset FPM Mode in onSectionEnd

writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, v, z,
f);

Optionally Reset FPM Mode in All Output Blocks with Feedrates

It is possible that your machine control does not support standard inverse time or DPM feedrates. If this
is the case you will need to write your own function to handle multi-axis feedrates. The
getMultiAxisMoveLength function will assist in the movement length calculations required for

Multi-Axis Post Processors 7-212
»4d AUTODESK CAM Post Processor Guide 8/8/23

calculating multi-axis feedrates. It takes the current position for the linear and rotary axes and will
calculate the tool tip, linear axes, and rotary axes lengths of the move from the previous location.

\ var length = machineConfiguration.getMultiAxisLength(x, v, z, a, b, ¢); \
Calculate the Length of the Multi-Axis Move

getMultiAxisMoveLength will return MoveLength obect, which can then be accessed using the following
functions to obtain the different move lengths.

Function Description

getRadialToolTipMovelLength | Calculated tool endpoint movement along the actual tool path.
getLinearMovel ength Combined linear delta movement.

getRadialMovel ength Combined rotary delta movement.

MoveLength Functions

var movelength = getMultiAxisMoveLength(x, vy, z, a, b, ¢);
var toolTipLength = moveLength.getRadialToolTipMoveLength();
var xyzLength = moveLength.getLinearMoveLength();

var abcLength = moveLength.getRadialMoveLength();
Retrieve the Calculated Move Lengths for the Tool Tip, Linear Axes, and Rotary Axes

7.8 Polar Interpolation

Polar interpolation replaces a linear axis in a 3-axis milling operation with a rotary axis. Polar
interpolation can be used to keep machining operations within the limits of the machine or simplify the
output of circular milling/drilling operations. It is sometimes referred to as XZC interpolation since it is
quite common to replace the Y-axis with the C-axis.

It can be supported in the control, for example using G12.1 on Fanuc style controls or handled within the
post processor. Machine control polar interpolation is typically supported on Mill/Turn machines.

Multi-Axis Post Processors 7-213
v4a AUTODESK CAM Post Processor Guide 8/8/23

N55
N6O
N65
N70
N75
N80
N85
N30
N95

N110

N55
N60
N65
N7T0
NT75
N80
N85
N90
N95

NBO
NB5
N30
N95

N100
N105
N110
N115
N120
N125
N130
N135
N140

GO0
M10
M12
MB
Gl
GO
GO
Gl
Z3.

G0

GO
MB
Gl
(=]
G0
Gl
Z3.
G93
c35

BO. cCO.

¥5.75 Y0. F650. k
G43 Z4.6 H2

Z4.2 . .
-4 0394 F13 333 | Without Polar Interpolation

N100 G3 X-5.75 I-5.75 J0. F40.
N105 X5.75 15.75 J0.

Z4.6
BO. CO.

¥X5.75 ¥Y0. F650.
G43 Z4.6 H2Z

zd4.2 . .
74.0394 F13.333 With Polar Interpolation

Cl179. F2.227
8. F2.227

N100 C360. F199.29
N105 GO Z4.6
N110 94

N90 G98 GB81 X-7.2 YO. Z3. R4.2 F40.
N95 X-6.2354 Y3.6

N100 X-
N105 XO.
N110 X3
N115 X6
N120 X7
N125 X6
N130 X3
N135 XO.
N140 X-
N145 X-
N150 G8

3.6 Y6.2354
Y7.2

.6 Y6.2354
.2354 Y¥3.6 . .
.2 Y0. Without Polar Interpolation
.2354 ¥-3.6
.6 Y-6.2354
¥Y-7.2

3.6 Y-6.2354
6.2354 Y-3.6
0

G98 GB1 X7.2 YO. Z3. R4.2 F40.
C150.
Cc120.
c90.

Cce0.
C30. R R
C360. With Polar Interpolation
C330.
C300.
c270.
c240.
Cc210.
G80

Sample Output Without and With Polar Interpolation

This section describes how to implement post processor generated polar interpolation support in your
post and how to activate it using a Manual NC command. The Haas Next Generation post processor has
polar interpolation implemented and can be used as a reference and to copy code from into your post.

7.8.1 Polar Interpolation Functions

The following functions are used with post generated polar interpolation. The setPolarMode and
setPolarFeedMode functions are defined in the post processor, all other functions are imbedded in the

post processor kernel.

»4 AUTODESK cAM Post Processor Guide 8/8/23

Multi-Axis Post Processors 7-214

Function Description

activatePolarMode(toler, angle, axis) Activates polar interpolation. tolerance specifies the
tolerance to use to keep the tool within the programmed
tool path. It is typically set to be tighter than the post
processor defined tolerance by a factor of 2 or 4
(tolerance / 2) to keep a smooth finish. angle defines the
current angle of the rotary axis used in polar
interpolation. axis defines the line that the tool can move
along during polar interpolation. A vector of (1, 0, 0)
keeps the tool along the X-axis.

deactivatePolarMode() Disables polar interpolation.

getPolarPosition(x, y, z) Returns the polar coordinates as a VectorPair for the
input x,y,z coordinates. The first vector is the XYZ
coordinates and the second vector is the ABC angles of
the polar position.

isPolarModeActive() Returns true if polar mode is in effect.
setCurrentPositionAndDirection(position) | Sets the current XYZ and ABC position. position is a
VectorPair that contains the XYZ coordinates in the first
vector and the ABC angles in the second vector.
setPolarFeedMode(mode) Defines the feedrate mode for polar interpolation. This
will usually be set to either Inverse Time or DPM
feedrates depending on capabilities of the control. This
multi-axis feedrate mode only needs to be changed for
polar interpolation if the machine supports TCP and
outputs FPM (programmed) feedrates with multi-axis
moves. Polar interpolation is not output using TCP, so
requires a different feedrate mode in this case. mode
determines if polar interpolation is being activated (true)
or deactivated (false). This function must be defined in
the post processor.

setPolarMode(section, mode) Enables/disables polar interpolation mode for the
specified section. section should be set to currentSection.
mode can be set to true to enable polar interpolation or
false to disable it. This function must be defined in the

post processor.
Polar Interpolation Functions

The required polar interpolation variables and functions can be copied from the Haas Next Generation
post processor. These functions are bounded by the Start of polar interpolation and End of polar
interpolation comments.

/I Start of polar interpolation

// .End of polar interpolation

Copy the Required Polar Interpolation Code

Multi-Axis Post Processors 7-215
v4a AUTODESK CAM Post Processor Guide 8/8/23

Most of this code will not require any modification. You may want to change the line/vector that polar
interpolation will move along during generation of the polar coordinates. This is defined by the
polarDirection variable at the top of the copied code. It is set to the X-axis (1, 0, 0) by default.

/I Start of polar interpolation
var usePolarMode = false; // controlled by manual NC operation, enables polar interpolation for a single operation

var polarDirection = new Vector(1, 0, 0); // vector to maintain tool at while in polar interpolation

Define the Axis Line for Polar Interpolation

You may have to modify the setPolarFeedMode to set the proper feedrate mode for polar interpolation.
If your machine does not support TCP, then this function can be blank and the same feedrate mode for
multi-axis and polar interpolation operations will be used.

function setPolarFeedMode(mode) {
if (machineConfiguration.isMultiAxisConfiguration()) {
machineConfiguration.setMultiAxisFeedrate(
Imode ? multiAxisFeedrate.mode : getProperty("useDPMFeeds™) ? FEED_DPM :
FEED_INVERSE_TIME,
multiAxisFeedrate.maximum,
Imode ? multiAxisFeedrate.type : getProperty("useDPMFeeds™) ? DPM_COMBINATION :
INVERSE_MINUTES,
multiAxisFeedrate.tolerance,
multiAxisFeedrate.bpwRatio
);
if ('receivedMachineConfiguration) {
setMachineConfiguration(machineConfiguration);

¥
¥
¥

setPolarFeedMode to Use when TCP is Supported

function setPolarFeedMode(mode) {

¥

setPolarFeedMode to Use when TCP is Not Supported

7.8.2 Manual NC Command to Enable Polar Interpolation

The Action Manual NC usePolarMode command is used to enable polar interpolation for a single
operation and must be placed prior to this operation. Polar interpolation will be automatically cancelled
after this operation, but since polar interpolation is handled in the post processor, you can make changes
to make the command modal.

Multi-Axis Post Processors 7-216

4 AUTODESK cAM Post Processor Guide 8/8/23

[} t Manual NC1 [Action=usePolarMode]
» [4iF [T1] Drilld [Rapid out]
[3M & €2 [T212D Contourt

usePolarMode Manual NC Command

The usePolarMode Manual NC command is implemented in the onManualNC function.

function onManualNC(command, value) {
switch (command) {
case COMMAND_ACTION:
if (String(value).toUpperCase() == "USEPOLARMODE") {
usePolarMode = true;
}
break;
default:
expandManualNC(command, value);
}
}

Implementing the usePolarMode Manual NC Command

7.8.3 Calculating the Polar Interpolation Initial Angle
The initial XY Z position and ABC angles for polar interpolation is calculated in the defineWorkPlane
function.

function defineWorkPlane(_section, _setWorkPlane) {

var abc = new Vector(0, 0, 0);
if (machineConfiguration.isMultiAxisConfiguration()) { // use 5-axis indexing for multi-axis mode

if (isPolarModeActive()) { // calculate the initial ABC position for polar interpolation
abc = getCurrentDirection();
}else {

abc = _section.isMultiAxis() ? _section.getInitial ToolAxisSABC() :
getWorkPlaneMachineABC(_section.workPlane, _setWorkPlane);

¥

// polar interpolation is treated as a multi-axis operation
if (_section.isMultiAxis() || isPolarModeActive()) {

cancelTransformation();
if (_setWorkPlane) {
if (activeG254) {

Multi-Axis Post Processors 7-217

4 AUTODESK cAM Post Processor Guide 8/8/23

writeBlock(gFormat.format(255)); // cancel DWO
activeG254 = false;
}
forceWorkPlane();
positionABC(abc, true);
}
}else {

Calculating the Initial ABC Position for Polar Interpolation in defineWorkPlane

Polar interpolation converts a 3-axis operation to a multi-axis operation, so it must be treated as such.
This means that the rotary axis must be unlocked prior to the initial positioning move, but not clamped
afterwards. This is handled in the setWorkPlane function.

if (TcurrentSection.isMultiAxis() && lisPolarModeActive()) {
onCommand(COMMAND_LOCK_MULTI_AXIS);

¥

Don’t Lock the Rotary Axis During Polar Interpolation in setWorkPlane

There could be code in the onCommand function for unlocking the rotary axis that may need to be
changed also.

case COMMAND_UNLOCK_MULTI_AXIS:
var outputClampCodes = getProperty("useClampCodes™) || currentSection.isMultiAxis()
|| isPolarModeActive();
if (outputClampCodes && machineConfiguration.isMultiAxisConfiguration() &&

(machineConfiguration.getNumberOfAxes() >= 4)) {
Unlocking the Rotary Axis During Polar Interpolation in onCommand

7.8.4 Initializing Polar Interpolation

The following modifications to onSection must be made to support polar interpolation. First, you need to
enable polar interpolation. This code is usually placed prior to the defineWorkPlane call.

/l enable polar interpolation
if (usePolarMode && (tool.type '= TOOL_PROBE)) {
if (polarDirection == undefined) {
error(localize("Polar direction property must be a vector - x,y,z."));
return;

}

setPolarMode(currentSection, true);

¥

defineWorkPlane(currentSection, false);

var initialPosition = isPolarModeActive() ? getCurrentPosition() :
Multi-Axis Post Processors 7-218

4 AUTODESK cAM Post Processor Guide 8/8/23

getFramePosition(currentSection.getlnitialPosition());

forceAny();

Enabling Polar Interpolation in onSection

7.8.5Disabling Polar Interpolation

Polar interpolation is disabled after each operation in the onSectionEnd function when it is only active
for a single operation.

if (currentSection.isMultiAxis() || isPolarModeActive()) {
writeBlock(gFeedModeModal.format(94)); // inverse time feed off
if (currentSection.isOptimizedForMachine()) {
/l the code below gets the machine angles from previous operation. closestABC must also be set
to true
currentMachineABC = currentSection.getFinalToolAxisABC();
}
if (operationSupportsTCP) {
disableLengthCompensation(false, "TCPC OFF");

¥
¥

setPolarMode(currentSection, false);
Enabling Polar Interpolation in onSection

7.8.6 Enabling Polar Interpolation in Drilling Cycles

Polar interpolation is supported for both 3-axis milling operations and in drilling cycles. The milling
operations will be converted to multi-axis operations once polar interpolation is activated, calling
onRapid5D and onLinear5D linear motion. No modifications to these functions need to be made to
support polar interpolation.

Drilling cycle locations will still call onCyclePoint during polar interpolation, so modifications must be
made to output the rotary axis with the cycle positions. This is done by making the following
modification to the getCommonCycle function for the first point of a cycle operation.

function getCommonCycle(x, y, z, 1, ¢) {
forceXYZ();

if (isPolarModeActive()) { // format polar interpolation position
var polarPosition = getPolarPosition(x, y, z);
return [xOutput.format(polarPosition.first.x), yOutput.format(polarPosition.first.y),
zOutput.format(polarPosition.first.z),
aOutput.format(polarPosition.second.x),
bOutput.format(polarPosition.second.y),

Multi-Axis Post Processors 7-219
v4a AUTODESK CAM Post Processor Guide 8/8/23

cOutput.format(polarPosition.second.z),
“R” + xyzFormat.format®];
} else { // format linear interpolation position

if (incrementalMode) {
zOutput.format(c);
return [xOutput.format(x), yOutput.format(y),
"Z" + xyzFormat.format(z - r),
"R" + xyzFormat.format(r - ¢)];
}else {
return [xOutput.format(x), yOutput.format(y),
zOutput.format(z),
"R" + xyzFormat.format(r)];

ks
¥

ks

Formatting the Polar Interpolation Cycle Position in getCommonCycle

In the onCyclePoint function you need to format the cycle location for polar interpolation for the 2
through final cycle point.

/I 2nd through nth cycle point
}else {
if (cycleExpanded) {
expandCyclePoint(x, y, z);
}else {

if (isPolarModeActive()) { // format polar interpolation position
var polarPosition = getPolarPosition(x, y, z);
writeBlock(xOutput.format(polarPosition.first.x), yOutput.format(polarPosition.first.y),
zOutput.format(polarPosition.first.z),
aOutput.format(polarPosition.second.x), bOutput.format(polarPosition.second.y),
cOutput.format(polarPosition.second.z));
return;

¥

Formatting the Polar Interpolation Cycle Position in onCyclePoint

8 Adding Support for Probing

Fusion 360, Inventor CAM, and HSM have support for multiple styles of probing operations, including
WCS Probing, Geometry Probing, and Surface Inspection. While the probing capabilities are supported
by many of the library post processors, they are not supported by all of them and custom post processors
may not have these capabilities. This chapter discusses the required changes to a post processor to
support the probing operations.

Adding Support for Probing 8-220
v4a AUTODESK CAM Post Processor Guide 8/8/23

8.1 WCS Probing

WCS Probing is defined as probing operations that are used to probe the part for the purpose of defining
a Work Coordinate System. While all Autodesk CAM products support WCS Probing, you will find
these operations in a different area of the interface for each of the products.

Drrilling
INSPECTION | 4% Drill Wizard [
E? EI [EL Pattern i
T = _ Crrill
] ﬁ' e ?f-_—\‘ lirE:' I_—‘_| $ o 33| Manual MC :?: |
* e P etup Folder 2 Manual NC

PROBING MANUAL 53

o s g Probe
Fusion 360 Inventor CAM HSMWorks

You can check the post processor you are working with to see if it supports WCS Probing. The easiest
method is to try to run a probing operation against the post, the post will fail if probing is not supported.
You may see an error message complaining about the spindle speed being out of range (probe operations
do not turn on the spindle) or a message that states that the probing cycle must be handled in the post
processor.

R R T R T
Error: Spindle speed out of range.

Error at line: 735

Error in operation: 'WCS Probel'

Failed while processing onSection() for record 261.

T R R R]
Spindle Speed Error Message

R T T T R T T T e T T R R R e R

Error: The probe cycle 'probing-xy-outer-corner' is machine specific and must always be handled in

the post configuration.

Error in operation: 'WCS Probel'

Failed while processing onCycle() for record 280.

R T T A T R T T T R T A R R e R
Machine Specific Error Message

If you receive either of these messages, then probing is not supported in your post processor and you
will need to add it.

Adding Support for Probing 8-221
v4a AUTODESK CAM Post Processor Guide 8/8/23

8.1.1 Probing Operations

There is a sample model available for testing the probing logic in a post processor. In Fusion 360 it is
contained int the CAM Samples/Post Processor folder. This model contains a part designed for testing

probing cycles using the available WCS Probing operations.

< @4 CAM Samples oo | B ST A Duied X Punitedn) X Proseseevx + O @ o
P 7 0| — | P
‘ Data | People] MANUFACTURE ¥ @ % @ ﬁU’ % @ = @
. - v | DRLL.Y | MULL.¥ PROE.¥ ACTI..™ NSPL.¥ MAN..™ DD-_ v | SELE_~
umoan -NewFomer o3 <+« BROWSER

@[5 Frobe Sample Part - Complete v1

A > CAM Samples > Post Processor ‘

T Milling_INCH - Post Processor Bench...
N F] Named Views

[N (5 Wodes

-

/519

Vil

@ Milling_MM - Post Processor Benchm...
2/5119

[k (T4 wes Probet

®

Vil

[k (T4 Wes Probe2

@ MillTurn_INCH - Post Processor Benc... (L7 e wes Probes
1028119 W7k 7<) WS Probed

vzl [k (74 Wes Probes

(WK (74 wes Probes
[k (74 wes Probe

@ MillTurn_MM - Post Processor Bench...
215119

[k (74 wes Probes

[K (74 wes Probes

vivl

vivl

T Probe Sample Part - Complete
12617

WK (T4 wes Probeto
[K (4 wes Probett

&
L
-
%

Wik [r4wes Propets

[Stock Transfer Wik (4 wes Provets

2022117 DN & e wes Probets
[N & e wes Probets
WK 4 Wes Probed?
WK T4 Wes Probets

WK 4 Wes Probetd

@ Water Laser-Plasma
3317

COMMENTS

or-& & G Q- & B G-

Sample Probing Part

One thing you will notice when creating a probing operation is that interface is intelligent enough to
only give you the probing operation types that apply to the type of geometry selected. For example, if
you select a planar face perpendicular to the X-axis, then the only operations available to you are the X

surface and Angle along X-axis operations.

Intelligent Probe Selection

»4 AUTODESK cAM Post Processor Guide 8/8/23

© PROBE : PROBE19

%068

¥ Geometry

Probe Mode

Probe Surface(s) x

Use Selection Point ([

Model

X surface

@ X surface
Angle along X-axis

Probe Type
Approach

Overtravel

(D Tool Orientation

(i] 0K Cancel

Adding Support for Probing 8-222

The WCS Probing operations are considered a canned cycle in the post processor and therefore are
output in the onCyclePoint function, with the probe type being stored in the cycleType variable. The
following table lists the available probing operations. You should note that probing cycles cannot be
expanded and must be handled in the post processor, either by performing the cycle, by giving an error,
or by expanding the cycle in the post processor.

cycleType Description

probing-x Probes a wall perpendicular to the X-axis.
probing-y Probes a wall perpendicular to the Y-axis.
probing-z Probes a wall perpendicular to the Z-axis.
probing-x-wall Probes a wall thickness in the X-axis
probing-y-wall Probes a wall thickness in the Y -axis

probing-x-channel

Probes the open distance between two walls in the X-axis

probing-y-channel

Probes the open distance between two walls in the Y -axis

probing-x-channel-with-island

Probes the open distance between two walls with an
island between the walls in the X-axis

probing-y-channel-with-island

Probes the open distance between two walls with an
island between the walls in the Y-axis

probing-xy-circular-boss

Probes the outer wall of a circular boss

probing-xy-circular-partial-boss

Probes the outer wall of a circular boss that is not a
complete 360 degrees

probing-xy-circular-hole

Probes the inner wall of a circular hole

probing-xy-circular-partial hole

Probes the inner wall of a circular hole that is not a
complete 360 degrees

probing-xy-circular-hole-with-island

Probes the inner wall of a circular hole with an island in
the hole

probing-xy-rectangular-boss

Probes the outer walls of a rectangular protrusion

probing-xy-rectangular-hole

Probes the inner walls of a rectangular hole

probing-xy-rectangular-hole-with-island

Probes the inner walls of a rectangular hole with an island
in the hole

probing-xy-inner-corner

Probes an inner corner. Modifies the origin and rotation
of the part.

probing-xy-outer-corner

Probes an outer corner. Modifies the origin and rotation
of the part.

probing-x-plane-angle

Probes a wall at an angle to the X-axis. Modifies the
rotation of the part.

probing-y-plane-angle

Probes a wall at an angle to the Y-axis. Modifies the
rotation of the part.

Probing Cycles

The parameters defined in the WCS Probing operation are passed to the cycle functions using the cycle
object. The following variables are available and are referenced as ‘cycle.parameter’.

Adding Support for Probing 8-223

4 AUTODESK cAM Post Processor Guide 8/8/23

Parameter

Description

angleAskewAction

This parameter will only be defined with an angular probing cycle
when the Askew box is checked. The only valid setting when it is
defined is the string stop-message.

approachl The direction the probe moves at it approaches the part. It is a string
variable and can be either positive or negative.

approach2 The direction the probe moves as it approaches the part for the second
face of a multi-face operation. Itis a string variable and can be either
positive or negative.

bottom The final depth position along the probe axis to touch the part.

clearance The height the probe rapids to on its way to the start of the probing
operation and the position it returns to after the probing operation is
finished.

depth The unsigned incremental distance from the top of the part along the
probe axis where the probe will touch the part.

feedrate The feedrate the probe will approach the part at.

hasAngleTolerance

Setto 1 if an angular tolerance is specified. The angular tolerance is
stored in the toleranceAngle parameter.

hasPositionalTolerance

Set to 1 if a positional tolerance is specified. The positional tolerance
is stored in the tolerancePosition parameter.

hasSizeTolerance

Set to 1 if a size tolerance is specified. The size tolerance is stored in
the toleranceSize parameter.

incrementComponent Set to 1 if the Increment Component box is checked under Print
Results.
outOfPositionAction This parameter will only be defined when the Out of Position box is

checked. The only valid setting when it is defined is the string stop-
message.

printResults

Set to 1 when the Print Results box is checked in the probing
operation.

probeClearance

The approach distance in the direction of the probing operation. The
probe will be positioned at this clearance distance prior to
approaching the part.

probeOvertravel

The maximum distance the probe can move beyond the expected
contact point and still record a measurement.

probeSpacing

The probe spacing between points on the selected face for Angle style
probing.

retract The height to feed from to the probing level and to retract the probe to
after probing is finished.
stock The top of the part.

toleranceAngle

The acceptable angular deviation of the geometric feature.

tolerancePosition

The acceptable positional deviation of the geometric feature.

toleranceSize

The acceptable size deviation of the geometric feature.

widthl

The width of the boss or hole being probed.

Adding Support for Probing 8-224

4 AUTODESK cAM Post Processor Guide 8/8/23

Parameter Description

width2 The width of the secondary walls (Y-axis) of a rectangular boss or
hole being probed.
wrongSizeAction This parameter will only be defined when probing a feature that

defines a fixed size and the Wrong Size box is checked. The only
valid setting when it is defined is the string stop-message.
Probing Parameters

8.1.2 Adding the Core Probing Logic

Adding WCS Probing support requires the main logic to output the probing cycle, supporting functions,
and some logic added to the main sections of the post processor. You should first open a post processor
that contains support for probing before starting to add probing to your post processor, since the logic
and most of the code will remain the same. Most of the generic post processors use Renishaw style
probing Macros (Fanuc, Haas, etc.), but there are also controls that support probing without the use of
these Macros, such as the Datron, Heidenhain, and Siemens controls. Be sure to start with closest match
to the machine you are creating a post processor for. The examples used in this chapter use the code for
the Renishaw style probing Macros.

The following functions support angular probing and safe probe positioning. They may have to be
modified to match the requirements of your control. The code shown is for a Fanuc style control. They
should be added prior to the onCyclePoint function.

Function Description

approach Converts the cycle approach string to a number (-1/1).

setProbeAngleMethod Determines the output method (G68, G54.4, rotational)
for angular probing cycles.

setProbeAngle Outputs the rotational blocks for angular probing cycles.
This output may have to be modified to match your
control.

protecedProbeMove Positions the probe in a protected mode (P9810).

getProbingArguments Formats the standard codes for all probing cycles based
on the probing cycle parameters. This function is usually
located after the onCyclePoint function and may have to
be modified to match your control.

Required Probe Functions

[** Convert approach to sign. */
function approach(value) {

function setProbeAngleMethod() {

Adding Support for Probing 8-225
v4a AUTODESK CAM Post Processor Guide 8/8/23

¥

/** Output rotation offset based on angular probing cycle. */
function setProbeAngle() {

function protectedProbeMove(_cycle, X, Y, z) {

-

function getProbingArguments(cycle, updateWCS) {

Required Angular and Safe Positioning Probe Functions

The core logic for probing is in the onCyclePoint function. The first part of the code to copy into your
post is at the top of the onCyclePoint function.

if (isProbeOperation()) {
if (luseMultiAxisFeatures && !isSameDirection(currentSection.workPlane.forward, new Vector(0,
0, 1)) {
if (tallowIndexingWCSProbing && currentSection.strategy == "probe™) {
error(localize("Updating WCS / work offset using probing is only supported by the CNC in the
WCS frame."));
return;
}

¥
if (printProbeResults()) {

writeProbingToolpathInformation(z - cycle.depth + tool.diameter / 2);
inspectionWriteCADTransform();
inspectionWriteWorkplaneTransform();
if (typeof inspectionWriteVariables == "function™) {
inspectionVariables.pointNumber += 1;
¥
}

protectedProbeMove(cycle, X, Y, 2);

¥

Required Probing Code at Top of onCyclePoint

All probing operations are considered a separate operation and are not modal. The following code in the
onCyclePoint function should directly follow the required probing code you just added and needs to be
modified as shown in the highlighted code to support probing.

if (isFirstCyclePoint() || isProbeOperation()) {
if (lisProbeOperation()) {

Adding Support for Probing 8-226
v4a AUTODESK CAM Post Processor Guide 8/8/23

/I return to initial Z which is clearance plane and set absolute mode
repositionToCycleClearance(cycle, X, vy, z);

}

Required Modifications for Probing Support

The code that outputs the probing calls is usually located after the drilling cycle logic in the main switch
block. Copy all code that contains the case statements for probing operations.

switch (cycleType) {
case “drilling”:

case “probing-x": // copy from this line to before the “default” case

default:

Calling the Probe Macro

Add the following code to the onCycleEnd function to end the probing operation.

function onCycleEnd() {
if (isProbeOperation()) {
zOutput.reset();
gMotionModal.reset();
writeBlock(gFormat.format(65), P + 9810, zOutput.format(cycle.retract)); // protected
retract move

}else {

}

8.1.3 Adding the Supporting Probing Logic

There are various locations that contain support logic for probing operations in the post processor.

Some of this code may already be in your post processor. The format used for the Probe WCS code
needs to be added at the top of the post where other formats are defined, if it is not already present in the
post processor.

\ var probeWCSFormat = createFormat({decimals:0, forceDecimal:true}); \
Required for Formatting the Probe WCS Code

The gRotationModal modal is used to manage the output of the rotation codes (G68, G68.2, etc.). Itis
possible that this variable is already defined in the post processor, but may have to be updated to support
probing. It should be defined as shown.

var gRotationModal = createModal({
onchange: function () {

Adding Support for Probing 8-227
v4a AUTODESK CAM Post Processor Guide 8/8/23

if (probeVariables.probeAngleMethod == "G68") {
probeVariables.outputRotationCodes = true;
}

}
}, gFormat); // modal group 16 // G68-G69
Defining the gRotationModal Modal

The following variables are used to control the output of probing features probing output and should be
defined in the fixed settings section at the top of the post processor.

var allowIndexingWCSProbing = false; // specifies probe WCS with tool orientation is supported
var probeVariables = {
outputRotationCodes: false, // defines if it is required to output rotation codes
probeAngleMethod : "OFF", // OFF, AXIS_ROT, G68, G54.4
compensationXY : undefined

b

Add to Fixed Settings Section

Variable Description

allowIndexingWCSProbing | Some controls do not allow for WCS probing operations when the tool
orientation is at an angle the XY-plane, i.e. the rotary tables are not at 0
degrees. If this is the case for your machine, then disable this variable
by defining it to be false. If WCS probing is allowed when the rotary
axes are not at 0 degrees, then set this variable to true.

outputRotationCodes Controls the output of the angular probing codes. This variable is
controlled by the post processor and should be set to false.
probeAngleMethod Defines the angular probing method to use. This method is usually

defined by the post processor in the setProbingAngleMethod function
and can be controlled by a post processor property. It should be set to
OFF. Other valid values are AXIS_ROT (used when a C-axis rotary
table is defined), G68 (the standard rotation method), or G54.4 (based
on the post processor property useG54x4).

compensationXY Controls the output of the XY compensation variables in angular
probing. This variable is controlled by the post processor and should be

set to undefined.
Probing Settings

Add the following variables to the collected state section at the top of the post processor.

var g68RotationMode = 0;
var angularProbingMode;

Add to Collected State Section

The following function and variable definition should be added prior to the onParameter function. The
onParameter function should also have the shown conditional added if it is not there.

Adding Support for Probing 8-228
v4a AUTODESK CAM Post Processor Guide 8/8/23

function printProbeResults() {
return currentSection.getParameter(*'printResults™, 0) == 1;
}

var probeOutputWorkOffset = 1;

function onParameter(name, value) {
if (name == ""probe-output-work-offset') {
probeOutputWorkOffset = (value > 0) ? value : 1;

}

Add Prior to and to onParameter Function

The following code needs to be added to the onSection function.

if (tool.type != TOOL_PROBE) {
var outputSpindleSpeed = insertToolCall || forceSpindleSpeed || isFirstSection() ||
rpmFormat.areDifferent(spindleSpeed, sOutput.getCurrent()) ||
(tool.clockwise !'= getPreviousSection().getTool().clockwise);

.

Don’t Output Spindle Speed with a Probe Tool

setProbeAngle(); // output probe angle rotations if required

/I set coolant after we have positioned at Z
setCoolant(tool.coolant);

Set Rotation Based on Angular Probing Results

if (isProbeOperation()) {
validate(probeVariables.probeAngleMethod != "*G68", *"You cannot probe while G68
Rotation is in effect.”);
validate(probeVariables.probeAngleMethod = ""G54.4", "*You cannot probe while workpiece
setting error compensation G54.4 is enabled.™);
writeBlock(gFormat.format(65), "'P'* + 9832); // spin the probe on
inspectionCreateResultsFileHeader();
}else {
Il surface Inspection
if (islnspectionOperation() && (typeof inspectionProcessSectionStart == "function™)) {
inspectionProcessSectionStart();

}
}

/I define subprogram
subprogramDefine(initialPosition, abc, retracted, zIsOutput);

retracted = false;

Adding Support for Probing 8-229
v4a AUTODESK CAM Post Processor Guide 8/8/23

13 |

Add at the end of the onSection Function

Coolant should be disabled during probing operations, so make sure that the following conditional is in
the getCoolantCodes function.

function getCoolantCodes(coolant) {
var multipleCoolantBlocks = new Array(); // create a formatted array to be passed into the outputted
line
if ("coolants) {
error(localize("Coolants have not been defined."));
}
if (isProbeOperation()) { // avoid coolant output for probing
coolant = COOLANT_OFF;

}

Disable Coolant for Probing Operations

The probe should be turned off and angular probing codes output in the onSectionEnd function.

function onSectionEnd() {

if (isProbeOperation()) {
writeBlock(gFormat.format(65), "'P** + 9833); // spin the probe off
if (probeVariables.probeAngleMethod = ""G68") {
setProbeAngle(); // output probe angle rotations if required

}
}
¥

8.1.4 Adding Support for Printing Probe Results

A property can be added for controlling whether the probing results are output to a single file or in
separate files for each probe/inspection operation.

singleResultsFile: {
title : "Create single results file",
description: "Set to false if you want to store the measurement results for each probe / inspection
toolpath in a separate file",

group :0,
type :"boolean”,
value :true,
scope : "post"

}

Add a Property to Control the Output of the Probe Results into a Single or Multiple Files

Adding Support for Probing 8-230
v4a AUTODESK CAM Post Processor Guide 8/8/23

The following functions should be included if your control supports the printing of probing results. The
modifications that you already made to support probing will handle the calls to these functions to output
the probing results. These functions are defined consecutively and are usually located after the
writeRetract function.

var iSDPRNTopen = false;
function inspectionCreateResultsFileHeader() {

function getPointNumber() {

function inspectionWriteCADTransform() {

function inspectionWriteWorkplaneTransform() {

function writeProbingToolpathinformation(cycleDepth) {

Include the Probing Results Functions

In the onClose function you will need to close the probe results file.

if (iIsSDPRNTopen) {
writeIn("DPRNT[END]");
writeBlock("PCLOS");
iISDPRNTopen = false;
if (typeof inspectionProcessSectionEnd == "function™) {
inspectionProcessSectionEnd();

ks
¥

Closing the Probing Results File

8.2 Geometry Probing

Geometry Probing behaves similarly to WCS Probing. It is used to measure geometric features on the
part during machining. The measured geometric features are checked against specified tolerances for
size and position. Based on the result, you can update the tool wear, or instruct the machine to stop
machining if the feature is out of tolerance. Geometry Probing is initiated using the Probe Geometry
operation listed in the PROBING menu.

Adding Support for Probing 8-231
v4a AUTODESK CAM Post Processor Guide 8/8/23

PROBING =
@j Inspect Surface

1o/ Probe Geometry

Geometry Probing Operation

The Pitch Circle Diameter (PCD) probing cycles are an addition to Geometry Probing that do not exist
in WCS Probing. Like all other probing cycles, the PCD cycle types are stored in the cycleType
variable.

cycleType Description
probing-xy-pcd-hole Probes holes around a PCD.
probing-xy-pcd-boss Probes bosses around a PCD.

Pitch Circle Diameter (PCD) Probing Cycles

PCD Probing Geometry

Like in WCS Probing, the parameters defined in the Geometry Probing operation are passed to the cycle
functions using the cycle object. These are in addition to the parameters defined for WCS Probing,
which are also available in Geometry Probing. The following variables are available and are referenced

as ‘cycle.parameter’.

Parameter Description

numberOfSubfeatures Number of geometric entities in a PCD probing operation.

pcdStartingAngle The starting angle of the first geometric entity to be probed in a PCD
probing operation.

toolDiameterOffset Defines the tool diameter offset register used to machine the feature.

toolLengthOffset Defines the tool length offset register used to machine the feature.

Adding Support for Probing 8-232
#4 AUTODESK cAM Post Processor Guide 8/8/23

Parameter Description

toolWearErrorCorrection The percentage of the deviation to update the tool wear by.

toolWearUpdateThreshold The minimum deviation that will trigger a tool wear update.

updateToolWear Enabled when tool wear compensation should be activated on the
controller.

widthFeature The diameter of the geometric feature for a PCD probing operation.

widthPCD The pitch circle diameter (PCD) of the geometric features.

Geometry Probing Parameters

To add Geometry Probing to your post you will first need to implement WCS Probing. After this there
are only minor changes required to support Geometry Probing.

The probeMultipleFeatures variable instructs the post engine that multiple geometric entities can be
probed in a single operation. The probing logic in all posts now support this feature, so it should be set
to true. It should be defined with the other post engine variables (allowedCircularPlanes, highFeedrate,
etc.).

highFeedrate = (unit == IN) ? 500 : 5000;
probeMultipleFeatures = true;

Enable the Probing of Multiple Geometric Entities

If the control supports PCD probing cycles be sure to include cases for these cycles in onCyclePoint,
where the other probing cycle code is located.

case "probing-xy-pcd-hole™:

protectedProbeMove(cycle, x, y, z);

writeBlock(
gFormat.format(65), "P" + 9819,
"A" + xyzFormat.format(cycle.pcdStartingAngle),
"B" + xyzFormat.format(cycle.numberOfSubfeatures),
"C" + xyzFormat.format(cycle.widthPCD),
"D" + xyzFormat.format(cycle.widthFeature),
"K" + xyzFormat.format(z - cycle.depth),
"Q" + xyzFormat.format(cycle.probeOvertravel),
getProbingArguments(cycle, false)

);

if (cycle.updateToolWear) {
error(localize("Action -Update Tool Wear- is not supported with this cycle."));
return;

b

break;

case "probing-xy-pcd-boss":

protectedProbeMove(cycle, x, y, z);

writeBlock(
gFormat.format(65), "P" + 9819,
"A" + xyzFormat.format(cycle.pcdStartingAngle),

Adding Support for Probing 8-233
v4a AUTODESK CAM Post Processor Guide 8/8/23

"B" + xyzFormat.format(cycle.numberOfSubfeatures),
"C" + xyzFormat.format(cycle.widthPCD),
"D" + xyzFormat.format(cycle.widthFeature),
"Z" + xyzFormat.format(z - cycle.depth),
"Q" + xyzFormat.format(cycle.probeOvertravel),
"R" + xyzFormat.format(cycle.probeClearance),
getProbingArguments(cycle, false)

);

if (cycle.updateToolWear) {
error(localize("Action -Update Tool Wear- is not supported with this cycle."));
return;

}
break;

PCD Probing Support in onCyclePoint

8.3 Inspect Surface

The Inspect Surface operation creates a probing strategy that specifies contact points across the surfaces
of the model to be measured by a probe while the part is still on the machine tool. The results can then
be imported and compared against the model to identify if the manufactured part is in or out of
tolerance.

Inspection streamlines the manufacturing process by letting you identify problem areas and decide on
any rework needed early in the process. It also helps to reduce the need to move parts between the
machine tool and a measuring device.

Surface Inspection is initiated using the Inspect Surface operation listed in the INSPECTION/PROBING
menu.

TURNING ADDIMTNVE INSPECTION

000 @ &

PROBING ™ MANUAL /

#12 Probe WCS

4':9 Probe Geometry

(™) inspect Surface & Inspect Surface

f:? Part ABgnment Creates a probing stra

Inspect Surface Operation

If you wish to use the Inspect Surface operations, you will need a post processor that will allow you to
output and run these inspection paths on your machine. You can either use one of the generic Inspection
post processors available on the Post Library for Autodesk Fusion 360, or modify your current milling
post which is already set up for your machine to add in the inspection functionality. You will need to
add support for probing to your post processor before adding the inspection capabilities.

Adding Support for Probing 8-234
v4a AUTODESK CAM Post Processor Guide 8/8/23

https://cam.autodesk.com/hsmposts?

The Inspection post processors will have the inspection or inspect surface suffix appended to the name
of the post processor. These are the only post processors that support Inspect Surface operations. You

will need to use one of these generic posts as a source for adding the inspection code to your post
processor.

8.3.1 Inspect Surface Operations

Inspect Surface operations differ from the other probing operations, in that you will select points on the
face of the part to inspect instead of individual features of the part.

@ INSPECT : 3 AXIS INSPECTION

@ Tool @ Geometry 5 Heights

¥ Geometry

Positions x
Surface Offset 0 mm

Upper Tolerance 0.005 mm
Lower Tolerance -0.005 mm
Approach 5 mm

Owertravel 5 mm

[0 Tool Orientation

2 Model

Surface Inspect Interface

The Surface Inspect operations are considered a cycle in the post processor and therefore call the
onCyclePoint function, though they are expanded in the inspectionCyclelnspect function. The standard
cycleType variable to define the cycle type is not set for Surface Inspect operations, but rather the
isInspectionOperation function is used to determine if it is a Surface Inspection cycle. This is further
explained in the Adding the Supporting Surface Inspect Logic section. Unlike other cycles that pass a
single point to the onCyclePoint function, the Surface Inspect cycle will contain the following 3 points
per cycle location, with each location generating a separate and subsequent call to onCyclePoint.

Location How to determine Description

First isFirstCyclePoint() Safe move to approach inspection location
Second (default) Inspection move

Third isLastCyclePoint() Retract move

Three Points per Inspection Location

Adding Support for Probing 8-235
#4 AUTODESK cAM Post Processor Guide 8/8/23

8.3.2 Inspection Parameters

The parameters defined in the Inspect Surface operation are passed to the inspection functions using
either the cycle object or through section parameters (getParameter). These parameters are handled in
the core Surface Inspect functions that are copied from an existing inspection post processor. Standard
probing parameters can be referenced in the inspection functions.

The following variables are referenced as ‘cycle.parameter’.

Cycle Parameter Description

linkFeed The feedrate used to position between inspection locations.

measureFeed The feedrate used to approach the part.

nominall The I-component of the vector normal to the surface inspection point.

nominalJ The J-component of the vector normal to the surface inspection point.

nominalK The K-component of the vector normal to the surface inspection point.

nominalX The X-axis position of the inspection point.

nominalY The Y-axis position of the inspection point.

nominalZ The Z-axis position of the inspection point.

outOfPositionAction This parameter will only be defined when the Out of Position box is
checked. The only valid setting when it is defined is the string stop-
message.

pointlD The numeric ID of the inspection point.

safeFeed The feedrate at which to approach the part.

Inspection cycle Parameters

The following parameters are inspection specific and are prefixed with the operation: string. They are
referenced using the getParameter(*operation:parameter ") function.

Parameter Description

inspectUpperTolerance The lower limit distance at which an inspected point is considered
within tolerance of the model.

inspectSurfaceOffset The positive or negative distance from the model from where
inspection points are measured.

inspectUpperTolerance The upper limit distance at which an inspected point is considered
within tolerance of the model.

Inspection Parameters

8.3.3 Adding the Core Inspect Surface Logic

Adding Surface Inspect support requires the main logic to be copied directly from a post processor that
already supports inspection, and logic added to the main sections of the post processor. You should first
open a post processor that contains support for inspection before starting to add Inspect Surface support
to your post processor, since the logic and most of the code will remain the same. As of this writing, the
following post processors have support for inspection, notice that all of them are named with the inspect
surface or inspection suffix.

Adding Support for Probing 8-236
v4a AUTODESK CAM Post Processor Guide 8/8/23

Post Library Name Filename

DATRON next Inspect Surface datron next inspect surface.cps

Fanuc Inspection fanuc inspection.cps

HAAS (pre-NGC) Inspect Surface haas inspect surface.cps

HAAS — Next Generation Control Inspect Surface haas next generation inspect surface.cps
Heidenhain Inspection heidenhain inspection.cps

Hurco Inspect Surface hurco inspect surface.cps

Results file generator for probing and inspect surface result generator inspect surface.cps
Siemens SINUMERIK 840D Inspection siemens 840D inspection.cps

Post Processors that Support Surface Inspect Operations

You can also search the online Post Library for Autodesk Fusion 360 to see if any other post processors
have been added with inspection capabilities.

Post Library for Autodesk Fusion 360

This is the place to find post processors for common CNC machines and controls

Make sure to read this important safety information before using any posts

inspect «

F HAAS (pre-NGC) Inspect Surface

Download + Sample # Share » RSS

neric nost 1

Search for Posts tﬁat Sup

mills like the o

bort Surface | n'spect Oberatiolns“

The main code for Inspect Surface logic is located at the end of the post processor. You will need to
copy from the definition of capabilities located after the onClose or onTerminate function to the end of
the file and add this code to the end of your post processor.

capabilities = |= CAPABILITY_INSPECTION;

description = "HAAS - Next Generation Control Inspect Surface™;

longDescription = "Generic post for the HAAS Next Generation control with inspect surface
capabilities.";

Copy From this Code to the End of the File for Core Surface Inspect Logic

Adding Support for Probing 8-237
v4a AUTODESK CAM Post Processor Guide 8/8/23

https://cam.autodesk.com/hsmposts

8.3.4 Adding the Supporting Inspect Surface Logic

There are a number of locations that contain support logic for Inspect Surface operations in the post
processor. You can refer to any of the generic post processors that support Inspect Surface operations
for an example on where this code is implemented.

Add the following code at the end of the onOpen function.

/I Probing Surface Inspection
if (typeof inspectionWriteVariables == "function™) {
inspectionWriteVariables();

t Add to the End of the onOpen Function
For multi-axis machines it is important that an actual machine configuration is defined and is not reliant
on 3+2 plane codes and/or IJK output. Please refer to the Multi-Axis Post Processors section for a
description on implementing multi-axis support to your post processor.

At the end of the onSection function, but before any subprograms are defined, add the following code.

if (isInspectionOperation(currentSection) && (typeof inspectionProcessSectionStart == "function™))

{

inspectionProcessSectionStart();

¥

Initialize the Surface Inspect Operation

At the top of the onCyclePoint function add in the following code.

if (islnspectionOperation(currentSection) && (typeof inspectionCyclelnspect == "function™)) {
inspectionCyclelnspect(cycle, x, y, 2);
return;

¥

Call the Controlling Surface Inspect Function

At the start of the onSectionEnd function add the following code. The writeBlock statement in this
example will differ between the machine post processors.

if (isInspectionOperation() && lisLastSection()) {
/I the following logic will differ depending on the post processor
writeBlock(gFormat.format(103), "P0", formatComment("LOOKAHEAD ON"));

}
Finalize the Surface Inspect Operation
At the end of the onClose function, but before any subprogram statements, add the following code after
the results file is closed.

if (typeof inspectionProgramEnd == "function") {
inspectionProgramEnd();

¥

Adding Support for Probing 8-238
v4a AUTODESK CAM Post Processor Guide 8/8/23

Finalize the Surface Inspect Program

9 Additive Capabilities and Post Processors

So far in this guide we’ve discussed post processors as they pertain to subtractive machining, but Fusion
360 also supports Additive FFF (fused filament fabrication) printers. This chapter discusses the basics
of selecting a machine capable of additive manufacturing, generating an additive tool path, creating
output, and the details of an additive post processor.

9.1 Getting Started

This section will give an overview of creating an Additive tool path but will not go into great detail on
all of the features of the Additive capabilities of Fusion 360, just enough to get you started on post
processing.

You will of course need a model that you want to print to start with. For the examples in this manual we
will use the Fusion Keychain model provided as a CAM sample with your installation of Fusion 360.
This model contains subtractive manufacturing operations which can be combined with Additive
manufacturing operations as long as your machine supports both capabilities.

| MILLING TURNING ADDITIVE PROBING FABRICATION UTLITES
Data People
> Za 61 P % i
MANUFACTURE 6 =
w serupr | acTions MANAGE nseecTe | seiect
A ~ CAM Samples ‘ < BROWSER o
4 © (B Fusion Keychain v2

) @ 4X Index, Wrap, Pattern O untsin

%,;f 9 D WM Named Views
D ® (B wodes
[, . Setups
@ 4X Wrap - FSAE Hub e i .
@ 7 b (=
A @ Autodesk Shelf for CNC Router
% ATEOE
g P ContactBoundaryPoint
‘ & @ Fusion Keychain 6
@ Gearbox - NC Programs Sorting
E @ Housing Probing Example
- @ Hub_and_Jaws

Sample Additive Part

You will see the ADDITIVE tab on the MANUFACTURE ribbon. Selecting this tab will display the
Additive menus.

MILLING TURNING ADDITIVE INSPECTION FABRICATION UTILITES
— £ — = Bl Lo} e
MANUFACTURE ~ i = (6. = Gl ||—— —
Z 8 BT TSN e ekl =
SETUP * POSITION ~ MULTIAXIS = MODIFY = ACTIONS ~ MANAGE ™ INSPECT ~ SELECT~

Additive Menus

Additive Capabilities and Post Processors 9-239
4 AUTODESK cAM Post Processor Guide 8/8/23

9.1.1Finding a Machine

The first step in creating an Additive tool path is to define the machine that you will be using. Unlike
Subtractive operations where the Machine Configuration is optional, it is required for Additive
operations. Pressing the Machine Library icon in the Additive menus will display the Machine Library
dialog. Select the Fusion 360 Library menu and check the Additive box to list the available Additive
machines. You can use the Search field or VVendor pull down menu to filter the machines that are
displayed. We will be using the Prusa i3 MK2 machine. You should drag this machine into your Local

library for both convenience and the ability to edit the machine.

_LING TURNING ADDITIVE

INSPECTION F,-\ERIIZ

@ SETUP: SETUP1

% R 2 ©®E M@ Eous

. Fusmn s l1brary o

TUPY WMODFY ¥ ACTIONS ¥ MANAGE ¥ ¥ Machine
=3 Machine Library ¥
prusa o] I E Clear filters Filters | Info 7]
Recent ~ Capabilities ¥
t : Prusa i3 MK2
Document 1 Prusa i3 MK2 6 Additive o
~ My machines Cutting
el Prusa i3 MK2S Milling
~ Linked Prusa i3 MK
Turning
Machines
Machines Inzpection
Prusaw} MK3)
Machines Prusa i3 MK3 » Technologies
Machines v Issimulation ready
Machines o e %
s Prusa i3 MK3S vendor
sts
Prusa i3 MK35 Prusa 9

Alfawise

Anet a
i

Anycubic

Autodesk

BCN3D

"

Bigrep
Bresser
COMI
Creality
eMotion Tech

@ Only machines in My Machines can be edited.

Prusa M'IITI
Prus

Select Cancel

Finding an Additive Machine and Storing in Your Local Library

Once you find your machine you may need to select the post processor and Print Settings that
correspond to this machine. The machines in the Fusion 360 Library should all be assigned to the
correct post processor for each machine, so it is rare that you would need to change the post processor.
If necessary, you can select/change the post processor by right clicking on the Prusa i3 MK3 machine
and choosing Change the selected post.

Additive Capabilities and Post Processors 9-240
4 AUTODESK cAM Post Processor Guide 8/8/23

Prusa i3 MK2

Prusa i3 MK2 @ Change the selected post
+" Post: prusa.cps ~

) Print setting is not selected G

T Select a print setting

Edit
B copy Ctrl+C
-ﬁ Import
. I Export
W Delete Del

Selecting/Changing the Post Processor and Setting the Print Settings

The Post Library dialog will then be displayed. Select the Fusion 360 library and check the Additive
box to display only the post processors supporting the Additive capabilities. You will want to select the

Prusa 13 MK2 machine. You will need to drag this post processor into to your Local library if you plan
on editing it.

Post Library X
I 5 Clear filters Filters | Info -
prusz o [x] & . E Q
7 v Capabilities X
Recent Vendor Description e
* My posts Prusa Prusa 9 Milling
Local Turning
- Linked Setup sheet
post-library
Intermediate
Posts
Posts et
Posts Cascading
Fusion 360 library o {additive! o
Inspection

Machine Simulation
* Vendor X

Prusa 9 -

Select Cancel

Selecting the Post Processor

You can also create linked folders on your computer to store both the machines and post processors.
You do this by right clicking on the Linked menu and selecting the Link Folder menu. A browser will
be displayed allowing you to select a folder to place your machines/posts.

POSL oy

Additive Capabilities and Post Processors 9-241
4 AUTODESK cAM Post Processor Guide 8/8/23

Selecting a Local Folder for The Machines and Post Processors

To select the Print Settings for the printer, right click on the Prusa i3 MK3 machine and choose Select a
print setting. This will bring up the Print Setting Library dialog allowing you to either select an existing
print setting or creating a custom print setting. Print Settings must be stored in the Local library in order

to create or edit them.

2] Print Setting Library
b [

-~

Recent Name Layer Height Technology

Document EABSI.]’Emm,[I.I.mm Nozzle 02mm FFF 9

o pr.mi‘ﬁ”ﬁ/;’
Local ABS 2.85mm, 0.4mm Nozzle 0.1mm

Fusion 360 library o

Breakaway 1.75mm, 0.4mm 02mm
Nozzle
Breakaway 2.85mm, 0.4mm 0imm
Nozzle
CPE 1.75mm, 0.4mm Nozzle 0.2mm
CPE 2.85mm, 0.4mm Nozzle 0.1mm

PLA + Breakaway 2.85mm, 0.1mm
0.4mm Nozzle

PLA + PVA 2.85mm, 0.4mm 01mm
Nozzle

PLA 1.75mm, 0.4mm Nozzle 0.2mm
PLA 2.85mm, 0.4mm Nozzle 0imm

Filters | Info

Technology

Layer Height
02Zmm

Extrusion Width
0.4

Filament Diameter
175

Support Enabled

true

Extruder 1 Temperature
250

Extruder 2 Temperature
250

Infill Pattern
Gyroid

Infill Density
30

Select

Cancel

Selecting the Print Setting

Once the Print Setting is in your local library you can edit it by pressing the 4 button. Press the # to
create a new Print Setting, you will be prompted to select an existing Print Setting to use as the template
for the new Print Setting.

Additive Capabilities and Post Processors 9-242
4 AUTODESK cAM Post Processor Guide 8/8/23

B
rﬁ Sk i Filters | Info 0
Recent Name " Layer Height Technology File Name Technology [ty
Document ABS 1.75mm, 0.6mm Nozzle 02Zmm FFF ABS175mm, 0.4mm e
o NpiieTimgs Nozzle.printSetting Layer Height
Local F Print Setting Editor X
Fusion 360 lib
Mame ABS 175mm, 0.&4mm Nozzle
Properties
’ﬁ‘ Machine identifier | :-409d-9058-ee95efabataa
Basic | Extruders | Layer | Infill | Skirt-brim | Raft | Support | Bridging | C
Extruder Extruder 1 v
Layer Height (mm) 02
Extrusion Width (mm) 04
Sparse Infill Density (%) 30
Sparse Infill Pattern Gyroid v
Travel Speed (mm/s) 150
k Enable Nozzle Priming
Enable Raft
Enable Support
- Randomize Perimeter Start Point
Enable Spiral Vase
0K Cancel

Editing a Print Setting

9.1.2Creating an Additive Setup

In the Fusion Keychain model you will notice that there is already a subtractive setup defined. For
machines that support both additive and subtractive machining you can define both types of operations
as long as they are in separate setups. The subtractive operations for these machines are exactly the same
as they would be for a purely subtractive (milling) machine. For this sample we will be ignoring the
subtractive setup and working with the additive only.

To create an Additive setup, press the Setup menu, change the Operation Type to Additive, and select the
configuration for your machine by pressing the Select... button under Machine.

Additive Capabilities and Post Processors 9-243
»d AUTODESK cAM Post Processor Guide 8/8/23

MILLNG TURNNG ADDITIVE INSPECTION FABRICATION UTLTES FEATURES
. S P fi o Lo
MANUFACTURE @@ a @ @ g I 'Ej (B Feet! pl
SETUP - POSITION ~ ACTIONS ~ MANAGE INSPECT= SELECT~
® SETUP:SETUPI (=) Machine Library x
Setup Post Process. . . m | =
7 B Search + &S Iy SE S Filters | Info (7]
¥ Machine
= Madel
Recent i Prusa i3 MK2 e
Macmne@¢ Select.. ¥ e o ¢ Prusa i3 MK2 3 MKz
¢ + Post: prusa.cps e Vendor
Prusa 13 I vy machines LSBT o Print settings: ABS 175mm, 0.4mm Nozle printSetting e ...
el Prusa
Print Settings v Linked Description

ABS 1.75mm, 0.4mm Nozzle

» Fusion 360 library

Prusa i3 MK2

Capability
¥ Setup -
Operation Type Additive @ o
Dimensions
v Arrangement Machine: X250mm, Y:210mm, 7
200mm
Avtomatic @2 Part: XOmm, Y.0mm, Z:0mm
Axis information
b Model
Table: Yxac
[] Head: Z
BROWSER
9
bl

o ¢ Select Cancel

Defining an Additive Setup

If you have not already assigned a post processor to this machine you will need to do so now. Do this
by pressing the Ediz... button under the Machine prompt. The Machine Configuration will display,
change the Post location to Personal — local, and select the prusa.cps post processor from the Post
Processor drop down menu.

<4 BROWSER @
© SETUP: SETUP2 F Machine Configuration *
g :
Information Post Processing
* Machine Dimensions
Limits Work Offsets
Machine Select Edit q Extruder Configurati Post Location Post Processor
CoSi P ESEy & o Personal - local ~ usa ~
Prusa i3 MK2 prusa.cps
Post Output Folder
Print Settings Select... C:/

ABS 1.75mm, 0.4mm Nozzle

¥ Setup

Operation Type Additive

w & Arrangement

Arrangement Type E

¥ Model

[i] OK Cancel

Printer model i3 Mk2, i3 Mk3

OK Cancel

Associating a Post Processor to a Machine Configuration

You can select and/or edit the Print Settings directly from the Setup dialog when creating the Additive
Setup. The Print Settings are specific to the creation of the Additive toolpaths, with settings to modify

Additive Capabilities and Post Processors 9-244
#4 AUTODESK cAM Post Processor Guide 8/8/23

the bed temperature, nozzle temperature, layer thickness, infill style, etc. You can also create your own

default print settings by giving them a new name.

File Name

ABS 175mm, 0.4mm
Nozle.printSetting

0o =

filters | Info

Technalogy

%0

@ SETUP:SETUP2 BX] Print Setting Libral
El:] + 7 <:| &

¥ Machine p— Name Layer Height Technology

Mach Sekct. Edt. X Document ABS 1.75mm, 0.4mm Nozzle 02mm FFF

Prusa it WK2 © Lyiriesiig:

Local
F Print Setting Editor
Print Setings Select.]om:n 360 library

ABS 1.75mm, 0.4mm Nozzle

Name | ABS175mm,0.4mm Nozle @o

Properties
v Setup

Operation Type Addtive

Machine identifier | :-409d-9058-ee95efabasaa
B Normal

Basic | Extruders | Layer | Infill | Skirt-brim | Raft | Support | Bridging | ¢

v @ Arrangement

¥ Model
Model x
[oK Cancel

© TEXT COMMANDS

Defining the Print Settings

Part Extruder

Layer Height (mm)
Extrusion Width (mm)
Sparse Infill Density (%)
Sparse Infill Pattern
Travel Speed (mm/s)
Nozzle Priming

Raft

Support

z-seam Alignment

Spiral Vase Mode

Extruder 1

0K Cancel

After creating the Setup you should see a representation of the machine base and envelope with the part
located on it. Feel free to rename the new setup to Additive so you know that this is an additive

operation. If you were going to do both additive and subtractive operations in the same model, then you
will want to move the Additive setup above the Subtractive setup.

Additive Capabilities and Post Processors 9-245

»4 AUTODESK cAM Post Processor Guide 8/8/23

dP-EYTQ B & & O .
Part Displayed on Machine

If the part is not in the location on the machine where you want it, you can easily reposition it using the
POSITION menus.

TURNING ADDITWVE
o
] L
sl
PRINT

*%P Move Components I

{E Minimize Build Height

“§ Automatic Orientation

_y_Place parts on platform

(s Colision Detection

Positioning Menus

9.1.3Creating and Simulating an Additive Operation

An Additive operation is automatically created when an Additive setup is created. You can see this

operation by expanding the Additive setup in the Browser. There can only be one Additive operation
per setup. You will need to generate the Additive Toolpath manually by selecting Generate from the
ACTIONS menus or by pressing Ctrl+G. This may take a while depending on the complexity of the

model.
Additive Capabilities and Post Processors 9-246
#4 AUTODESK cAM Post Processor Guide 8/8/23

oS bR = [
| acrons~ | e INSPECT* SELECT~

! @Gewme Ciri+G

@ Simulate Additive Toolpath Regenerates one or more selected operations. If a
Fost Process container (e.g., setup, folder) is selected, all of its
— child operations will be regenerated.

[5] print statistics

. You can regenerate all your operations either all at
Eﬂ amf scene export once, or individualhy.

Generating the Additive Toolpath

Generate

To simulate the Additive toolpath press the Simulate button in the ACTIONS menus. Additive toolpaths
simulate in the same manner as Subtractive toolpaths, but it is recommended that you place the cursor
over the green slide bar at the bottom of the window, hold down the left mouse button, and move the
mouse to the left and right to visualize the Additive process.

FABRICATION UTILITES
2 ®BE enE = .
d = | [
SUPPORTS ¥ ACTIONS ¥ MANAGE ¥ INSPECT ~ SELECT ¥

Simulate additive toolpath

© SIMULATE ADDITIVE TOOLPATH
‘G Display
¥ Preview mode
Mode Display upto current la... ¥
Animation Animate full model v

Calculate Recalculate

v Statistics
Layer count 62
Current layer 26

Current height 2.700mm

< < <« P > de) o
._

Simulating the Additive Toolpath

Additive Capabilities and Post Processors 9-247
#4 AUTODESK cAM Post Processor Guide 8/8/23

9.2 Creating a New Machine Configuration

When adding a new Additive post processor you will need to create a corresponding Machine
Configuration. You do this by copying an existing Machine Configuration into your Local library by
opening the Machine Library dialog, selecting the Machine Configuration you want to copy, and then
pasting it into your Local folder.

=3 Machine Library *®

0$ Ii‘l L3Sk Clear filters Filters | Info e

Recent Model

N o 1 Prusa i3 MK2 e
! Post: prusa.cps e Vendor

~ My machines Print settings:; ABS 175mm, Memm Nozzle printSetting S
— Prusa

v+ Linked Description

Fusion 360 library Prusa i3 MK2

Capability

Dimensions

Machine: X250mm, Y-210mm, Z:
200mm

Part: X0mm, Y:0mm, Z:0mm

Axis information
Table: YXAC
Head: Z

Close

Copying a Machine Configuration

Once you create a copy of the Machine Configuration in your Local folder you will need to edit it and
describe your machine. Be sure to give it a unique name and description and go through all sections to
properly define the machine.

Additive Capabilities and Post Processors 9-248
4 AUTODESK cAM Post Processor Guide 8/8/23

B Machine Libra

prusa e$ # T b | l"@ o Clear filters Filters | Info (7]

Model
Recent Prusa i3 MK2 i3 MK2
o Prusa i3 MK2 3
) R i " Post: prusa.cps Vendor
My machines = + Print settings: ABS 175mm, (amm Nozzle printSetting 5
Local s
F
v Linked Machine Configuration x
» Fusion 360 library Il DEImateom Information
Dimensions Model Personal Printer
Limits
Extruder Configuration o e o Autodesk
Post Processing Description Autodesk Personal Printer

Machine Identifier ‘FBBB39 12-F75C-409D-9058-FE95EFAGASAA
Platform Clearance 0mm
Platform Mesh T Platform Mesh
Platform Positioning
Platform Scaling
B Machine Image =
2 [Image

Duplicating and Editing the Machine Configuration

After creating your Machine Configuration you will need to copy a seed post into a local folder, for
example prusa.cps, and give it a meaningful name. You can then assign this post processor to your
machine. You can also select the default output folder for your G-code files when posting.

F Machine Configuration X
Information Post Processing
Dimensions
Limits Work Offsets
Extruder Configuration Post Location Post Processor
Post Processing o Custom @ e ~ |aub3desk personal printer. cps h r3
Post Qutput Folder

=

Assigning a Post Processor to Your Additive Machine

You are now ready to edit your post processor.

9.3 Additive Common Properties

The additive post processors have properties that are common to most of them. These properties are
listed in the following table.

Additive Capabilities and Post Processors 9-249
4 AUTODESK cAM Post Processor Guide 8/8/23

Title Property Description

Relative extrusion mode | relativeExtrusion | Selects between an absolute or relative extrusion mode.
Trigger _trigger Specifies the method used to trigger a change of
extruder temperature. It can be disabled or controlled
by the Z-height or layer number.

Trigger Value _triggerValue Specifies the Z-height difference or layer number
increment to trigger an extruder temperature change.

Start Temperature tempStart The starting temperature in Celsius for the extruder,
overrides the starting temperature in the Print Settings.

Temperature Interval templnterval The degrees in Celsius to increase the temperature of

the extruder for each trigger event.
Common Additive Properties

The Temperature Tower properties are typically used to test new filaments in order to identify the best
printing temperatures. These properties are listed in the Temperature Tower group.

9.4 Additive Variables

There are variables that are specific to Additive machines. These variables are either globally defined or
are accessed through function calls. The following table lists the variables available for Additive
machines.

Variable Description

bedTemp Temperature of bed.

commands Post processor defined variable that defines the codes that are output for
additive commands.

Extruder An unnamed object that contains the extruder definition. This object is
obtained by calling the getExtruder function.

layerCount Number of printed layers for entire printing operation.

machineConfiguration The Machine Configuration definition.

numberOfExtruders Number of extruders used.

partCount Number of bodies created during printing.

printTime The amount of time the print should take.

settings Post processor defined variable that defines settings specific to additive
machines.

Global Additive Variables

The post processor defined variables are defined in the getPrinterGeometry function from the
machineConfiguration settings and are typically in all Additive post processors.

9.4.1 The machineConfiguration Object

The machineConfiguration object is standard between all machine types, milling, turning, additive, etc.
machineConfiguration settings are always referenced using a function. The variables returned from the
functions are described in the following table.

Additive Capabilities and Post Processors 9-250
2 AUTODESK cAM post Processor Guide 8/8/23

MachineConfiguration Function | Description

getCenterPositionX(id) The center of the printer table in X.
getCenterPositionY (id) The center of the printer table in Y.
getCenterPositionZ(id) The center of the printer table in Z.
getExtruderOffsetX(id) The offset in X from the reference extruder.
getExtruderOffsetY (id) The offset in Y from the reference extruder.
getExtruderOffsetZ(id) The offset in Z from the reference extruder.
getVendor() Th manufacturer of the printer.

getModel() The model type of the printer.
getNumberExtruders() Number of defined extruders.

getWidth() The width of the machine in X.

getDepth() The depth of the machinein Y.

getHeight() The height of the machine in z.

machineConfiguration Functions used for Additive

9.4.2 The Extruder Object

There is not really a named Extruder object, meaning you cannot use the new Extruder syntax to create
an object as you would a Vector, but there is the getExtruder function that will return an unnamed object
that has extruder specific variables. Each extruder can be referenced by passing the extruder number to
the getExtruder function.

| var totalLength = getExtruder(1).extrusionLength; |
Get the Total Length of Material Used for Extruder 1

The following table defines the variables accessible using the getExtruder function

Extruder Variable Description

extrusionLength Total length of material used for this extruder
during printing.

filamentDiameter The diameter of the filament material.

materialName The name of the material used for the extruder.

nozzleDiameter The diameter of the extruder nozzle.

temperature The temperature setting for the extruder.

Extruder Variables

9.4.3 The commands Object

The commands object is defined in the post processor and defines the output codes for common additive
commands. Define the proper code to be output for each command in this definition. Some of the
commands may have specifiers that define subcommands, such as on and off for fan. The following
table lists the commands supported by the library additive post processors.

Additive Capabilities and Post Processors 9-251
4 AUTODESK cAM Post Processor Guide 8/8/23

The code values can be a formatted number or a text string. 1f a command does not exist for your
printer, then define the code as undefined.

var commands = {

temperature
walitExtruder

temperature
setBedTemperature
wailtBed
reportTemperatures
fan
extrusionMode

// Specify the required commands for your printer below.

extruderChangeCommand
setExtruderTemperature:

: mFormat.format (109), // wait command for the extruder

: mFormat.format (140), // set the bed temperature
: mFormat.format (190), // wait for the bed temperature

undefined, // command to change the extruder
mFormat.format (104), // command to set the extruder

undefined, // report the temperatures to the printer
{on:mFormat.format (106), off:mFormat.format (107)},
{relative:mFormat.format (83),
absolute:mFormat.format (82)} // extrusion mode

commands Definition

commands Variable

Description

extruderChangeCommand

Command to change the extruder.

setExtruderTemperature

Command to set the extruder temperature.

waitExtruder

The wait command when setting the extruder
temperature.

setBedTemperature Command to set the bed temperature.

waitBed The wait command when setting the bed
temperature.

reportTemperatures Command to report the temperatures to the
printer.

Fan Commands to turn the fan on and off, defined

using the syntax {on:---, off:---}.

extrusionMode

Commands to select either relative or absolute
filament extrusion modes, defined using the
syntax {relative:---, absolute:---}.

The commands Object

9.4.4 The settings Object
The settings object is post processor defined and defines fixed settings that are not controlled by post

properties.

var settings = {
useGO

Y

true, // use GO or Gl commands for rapid movements

maximumExtruderTemp: 260 // specifies the maximum extruder temperature

settings Definition

| settings Variable

| Description |

Additive Capabilities and Post Processors 9-252

4 AUTODESK cAM Post Processor Guide 8/8/23

useGO

Specifies whether to use GO (true) or G1 (false)
for rapid moves.

maximumExtruderTemp

Sets the maximum extruder temperature.

The settings Object

9.5 Additive Entry Functions

Additive post processors use most of the common Entry functions for Subtractive posts, with some
specialized Entry functions for Additive post processors only. Remember that Entry functions are called
from the post processor kernel based on the record type in the intermediate file, so this means that there
is a difference between Subtractive and Additive intermediate files.

The following table defines the unique or modified Entry Functions for Additive post processors. You
can reference the table in the subtractive Entry Functions section for a description of the common entry

functions.

Entry Function

Invoked When ...

onAcceleration(travel, printing, retract)

Acceleration is changed in an additive pass.

onBedTemp(temp, wait)

Bed temperature change.

onCircularExtrude(_clockwise, _cx, _cy, _cz,
X, Y, z, T e

Additive circular pass.

onClose()

End of post processing.

onExtruderChange(id)

Change of extruders.

onExtruderTemp(temp, wait, id)

Extruder temperature change.

onExtrusionReset(length)

Resets the length of the extrusion material used.

onFanSpeed(speed, id)

Change of fan speed.

onJerk(x, y, z, €)

The axis jerk is changed in an additive pass.

onLayer(layer)

Change of layer level.

onMaxAcceleration(x, y, z, €)

Max axis acceleration is changed in an additive pass.

onOpen()

Post processor initialization.

onLinearExtrude(x, y, z, f, e)

Additive pass.

onParameter(string, value)

Each parameter setting.

onRapid(x, vy, z)

Positioning Rapid move.

onSection()

Start of an operation.

Additive Entry Functions

Many of the entry functions will get their arguments and settings from either the Machine Configuration
or Print Settings. These dialogs can be accessed by pressing the right mouse button when over the

Additive setup and selecting Edit.

Additive Capabilities and Post Processors 9-253

4 AUTODESK cAM Post Processor Guide 8/8/23

d 7, setups,,

4 5

o

F-

& P
= A
[& Setup

'H'I

, 5]
{:} Edit

MNew Study

B

Create From Template

[; Export 3MF

R*"-;c,- Generate Ctri+5

Editing the Setup

This will display the Setup dialog, where you can select to edit either the Machine Configuration
(described in the previous section) or Print Settings. You can also display the Print Settings dialog by
pressing the Print Settings button in the Additive menus.

@ SETUP: ADDITIVE ING

ADDITIVE PROBING FABRICATION UTILTES

¢ setup

¥ Machine e

Wachine Select... Edit. x e

‘Autodesk Personal Printer

Print Settings. Select

Breakaway 2.85mm, 0.4mm Nozzle

| ' Print Setting Editor

[Y z@\ —
<S5 (61 z o7
LI B sl @npE -
PRINT SETTINGS ¥ INFILL ¥ SUPPORTS ™ ACTIONS MANAGE v INSP
A T
=

Name |Breakaway 2.85mm, 0.4mm Nozzle

| Properties

_ Basic Extruder Layer Infill Skirt-brim Raft Support Bridging Cooling G-Gop

Layer height (mm) |01 |
Extrusion width (mm) |U.3 |
Sparse infill density (%) |30 |
Sparse infill pattern | Rectilinear - |
Travel speed (mm/s) |EE!D |
Nozzle priming enabled e

Enable raft

Support enabled N

Randomize perimeter start point |«

Enable nozzle wipe

9.5.1 Global Section

Cancel

Editing the Print Settings

The global section for an Additive post is consistent with the standard global section for Subtractive
posts, it contains the description of the post processor and machine, its capabilities, kernel settings,

property table, and global variables. The
CAPABILITY_ADDITIVE.

capabilities of the post must be set to

Additive Capabilities and Post Processors 9-254

»d AUTODESK cAM Post Processor Guide 8/8/23

capabilities = CAPABILITY_ADDITIVE;
/[capabilities = CAPABILITY_ADDITIVE | CAPABILITY _MILLING; // additive & subtractive
Setting the Post Processor Capabilities to Additive

The common global variables found in an Additive post are defined in the Additive Variables section.

9.5.2 onOpen
| function onOpen() |

The onOpen function is called at the start of post processing and is used to define settings and output
startup blocks. It usually varies from machine to machine.

1. Define settings
2. Output machine and program description
3. Output initial startup codes

Following is an example onOpen function.

function onOpen() {
setFormats(MM); // machine require input code in MM
/I output machine and program description
if (typeof writeProgramHeader == "function") {
writeProgramHeader();

¥

/l output start of program codes

writeBlock(gFormat.format(unit == MM ? 21 : 20)); // set unit

writeBlock("M115 U3.0.10 ; tell printer latest fw version™);

if (getProperty("printerModel™) == "i3mk2mk3") {
writeBlock(gFormat.format(28), "W ; home all without mesh bed level");

} else if (getProperty("printerModel™) == "mini") {
writeBlock(gFormat.format(28), '; home all without mesh bed level"™);

¥
s

Example onOpen Function

9.5.3 onSection

| function onSection() { |

The onSection function is called at the start of each Additive operation and outputs the starting codes for
an Additive operation. It usually varies from machine to machine.

| function onSection() { |

Additive Capabilities and Post Processors 9-255
2 AUTODESK cAM post Processor Guide 8/8/23

/I probe bed after heating

if (getProperty("printerModel™) == "i3mk2mk3") {
writeBlock(gFormat.format(80), *; mesh bed leveling");

} else if (getProperty(“printerModel™) == "mini™) {
writeBlock(gFormat.format(29), "*; mesh bed leveling™);

¥

I/l output start of operation codes

writeBlock(gFormat.format(92), eOutput.format(0));

writeBlock(gAbsIncModal.format(90)); // absolute spatial co-ordinates

writeBlock(getCode(getProperty(“relativeExtrusion™) ? commands.extrusionMode.relative :
commands.extrusionMode.absolute));

¥

Sample onSection Function

9.5.4 onClose

| function onClose() {

The onClose function is called at the end of the last operation. It is used to output the end-of-program
codes. It usually varies from machine to machine.

function onClose() {
/I output end-of-program codes
writeBlock("G4 ; wait");
xOutput.reset();
yOutput.reset();
if (getProperty("printerModel™) == "i3mk2mk3") {
writeBlock(gMotionModal.format(1), xOutput.format(0),
yOutput.format(toPreciseUnit(200, MM)), "*; home X axis");
} else if (getProperty("printerModel™) == "mini") {
writeBlock(gMotionModal.format(1), xOutput.format(0),
yOutput.format(toPreciseUnit(150, MM)), **; home X axis");
}

writeBlock(mFormat.format(84), "; disable motors™);

¥

Sample onClose Function

9.5.5 onBedTemp

\ function onBedTemp(temp, wait) {

Arguments Description
temp The bed temperature in Celsius.
wait Set to true when the machine should wait for the bed to warm up.

Additive Capabilities and Post Processors 9-256

4 AUTODESK cAM Post Processor Guide 8/8/23

The onBedTemp function is called multiple times during a toolpath. At the start of the operation
onBedTemp is called with wait set to false to start heating the bed. It is called a second time prior to the
start of the toolpath with wait set to true so that the machine waits for it to reach the targeted
temperature. It will also be called at the end of the program to turn off the heating of the bed.

The maximum bed temperature is defined in the Limits tab when defining the Machine Configuration in
Fusion 360. The onBedTemp function is common to most additive posts.

function onBedTemp(temp, wait) {
if (wait) {
writeBlock(getCode(commands.reportTemperatures));
writeBlock(getCode(commands.waitBed), sOutput.format(temp));
}else {
writeBlock(getCode(commands.setBed Temperature), sOutput.format(temp));
}
}

onBedTemp Function

9.5. 6 onExtruderTemp
| function onExtruderTemp(temp, wait, id) {

Arguments Description

temp The extruder temperature in Celsius.

wait Set to true when the machine should wait for the extruder to warm up.
id Extruder number to set the temperature for. The first extruder is 0.

The onExtruderTemp function is called multiple times during a toolpath. At the start of the operation
onExtruderTemp is called with wait set to false to start heating the extruder. It is called a second time
prior to the start of the toolpath with wait set to true so that the machine waits for it to reach the targeted
temperature. It will also be called at the end of the program to turn off the heating of the extruder.

The desired extruder temperature is defined in the Extruder tab of the Print Settings dialog. The
maximum extruder temperature is set in the Extruder Configuration tab when defining the Machine
Configuration in Fusion 360. The onExtruderTemp function is common to most additive posts.

function onExtruderTemp(temp, wait, id) {
if (typeof executeTempTowerFeatures == "function™ && getProperty("_trigger™) '= undefined) {
if (getProperty("_trigger") !'= "disabled" && (getCurrentPosition().z == 0)) {
temp = getProperty("tempStart™); // override temperature with the starting temperature

}

}

if (wait) {
writeBlock(getCode(commands.reportTemperatures));

Additive Capabilities and Post Processors 9-257
4 AUTODESK cAM Post Processor Guide 8/8/23

writeBlock(getCode(commands.waitExtruder), sOutput.format(temp), tFormat.format(id));
}else {
writeBlock(getCode(commands.setExtruderTemperature), sOutput.format(temp),
tFormat.format(id));
}

¥

onExtruderTemp Function

9.5.7 onExtruderChange
\ function onExtruderChange(id) {

Arguments Description
id Extruder number to activate. The first extruder is O.

The onExtruderChange function handles a switch between extruders, similar to a tool change in a
subtractive machine. The number of extruders is defined in the Information tab when defining the
Machine Configuration in Fusion 360. The onExtruderChange function is common to most additive
posts.

function onExtruderChange(id) {
if (id > machineConfiguration.getNumberExtruders()) {

error(subst(localize("This printer does not support the extruder '%1"."), integerFormat.format(id)));
return;

}

writeBlock(getCode(commands.extruderChangeCommand), tFormat.format(id));
activeExtruder = id;

forceXYZE();

¥

Sample onExtruderChange Function

9.5.8 onExtrusionReset
\ function onExtrusionReset(length) {

Arguments Description
length Length of the additive material used for the active extruder.

The onExtrusionReset function will be called to reset the length of the used additive material when the
active extruder changes. At the beginning of the program it will be called with a value of 0 and when
switching between one extruder and another it will pass the length of additive material used for the
newly activated extruder. The onExtruderChange function is common to most additive posts.

function onExtrusionReset(length) {
if (getProperty("relativeExtrusion™)) {

Additive Capabilities and Post Processors 9-258
2 AUTODESK cAM post Processor Guide 8/8/23

eOutput.format(0);
eOutput.format(0);
}
eOutput.reset();
writeBlock(gFormat.format(92), eOutput.format(length));

¥

onExtrusionReset Function

9.5.9 onFanSpeed

\ function onFanSpeed(speed, id) { ‘

Arguments Description
speed The fan speed as a percentage of the default speed in the range of 0-255.
id Extruder number to set the fan speed for, typically the active extruder.

The onFanSpeed function is used to turn on and off the fan used for cooling the extruded material. The
fan is controlled starting at the layer after the number of disabled layers defined in the Cooling tab of the
Print Settings dialog. The onFanSpeed function is common to most additive posts.

function onFanSpeed(speed, id) {
if (fcommands.fan) {
return;
}
if (speed ==0) {
writeBlock(getCode(commands.fan.off));
}else {
writeBlock(getCode(commands.fan.on), sOutput.format(speed));
}
s

onFanSpeed Function

9.5.10 onAcceleration
\ function onAcceleration(travel, printing, retract) {

Arguments Description

travel The travel acceleration, used for positioning moves.
printing Printing acceleration, used for extrusion moves.
retract Retract acceleration, used for extruder retract moves.

The onAcceleration function is invoked when the acceleration changes in an Additive toolpath. The
acceleration values are provided in (velocity_change/seconds)?.

Additive Capabilities and Post Processors 9-259
2 AUTODESK cAM post Processor Guide 8/8/23

/ set the current acceleration rate for the move types
function onAcceleration(travel, printing, retract) {
writeBlock(mFormat.format(204), "P" + integerFormat.format(printing), "T" +
integerFormat.format(travel), "R" + integerFormat.format(retract));

¥

onAcceleration Function

9.5.11 onMaxAcceleration
\ function onMaxAcceleration(x, y, z, €) {

Arguments Description

X The maximum acceleration along X.

y The maximum acceleration along Y.

z The maximum acceleration along Z.

e The maximum acceleration of the extrusion.

The onMaxAcceleration function is invoked when the maximum axis acceleration changes in an
Additive toolpath. The acceleration values are provided in (velocity _change/seconds)?.

/I set the maximum acceleration for each axes
function onMaxAcceleration(x, y, z, €) {
writeBlock(mFormat.format(201), "X" + integerFormat.format(x), “Y" +
integerFormat.format(y), "Z" + integerFormat.format(z), "E" + integerFormat.format(e));

¥

onMaxAcceleration Function

9.5.12 onJerk
\ function onJerk(x, y, z, e) {

Arguments Description

X The X-axis jerk.
The Y-axis jerk.
The Z-axis jerk.
The extruder jerk.

DN

The onJerk function is invoked when the axis jerk changes in an Additive toolpath. The jerk control
values are provided in velocity_jerk/seconds.

/I jerk control
function onJerk(x, y, z, e) {
writeBlock(mFormat.format(205), "X" + integerFormat.format(x), "Y" + integerFormat.format(y),

Additive Capabilities and Post Processors 9-260
2 AUTODESK cAM post Processor Guide 8/8/23

"Z" + integerFormat.format(z), "E" + integerFormat.format(e));

¥

onJerk Function

9.5.13 onlLayer

| function onLayer(layer) {

Arguments Description
Layer Current layer being printed.

The onLayer function is called for every printed layer and passes in the active layer. It can be used to
output a comment prior to the toolpath for each layer and/or to increment a counter on the machine
control to show the printing progress. The onLayer function is common to most additive posts.

function onLayer(num) {
if (typeof executeTempTowerFeatures == "function™) {
executeTempTowerFeatures(num);
}
writeComment(“Layer : " + integerFormat.format(num) + " of " +
integerFormat.format(layerCount));

¥

Sample onLayer Function

9.5.14 onParameter

| function onParameter(name, value) {

Arguments Description
name Parameter name.
value Value stored in the parameter.

The onParameter function behaves the same as it does in a Subtractive post processor, but there is one
parameter that is specific to Additive machines. This is the feedRate parameter that defines the travel
speed that the machine will move when positioning without extruding material and for extruder changes.
The onParameter function is common to all additive posts.

function onParameter(name, value) {
switch (name) {
case "feedRate™:
rapidFeedrate = toPreciseUnit(value > highFeedrate ? highFeedrate : value, MM);
break;

ks
¥

onParameter Function

Additive Capabilities and Post Processors 9-261
4 AUTODESK cAM Post Processor Guide 8/8/23

9.5.15 onRapid
| function onRapid(_x, vy, 2){

Arguments Description
X, Y, Z The tool position.

The onRapid function handles positioning moves, which do not extrude the additive material. The
output of the onRapid function usually outputs a single block for the positioning move. The onRapid
function is common to all additive posts.

var rapidFeedrate = highFeedrate;
function onRapid(_x, _y, _2){
var x = xOutput.format(_x);
var y = yOutput.format(_y);
var z = zOutput.format(_z);
var f = feedOutput.format(rapidFeedrate);
ifxllylizlif{
writeBlock(gMotionModal.format(settings.useG0 ? 0 : 1), X, v, z, f);
feedOutput.reset();

¥
¥

onRapid Function

9.5.16 onLinearExtrude

\ function onLinearExtrude(x, vy, z, f, _e){

Arguments Description

X, Y, Z The tool position.

f The feedrate.

e Length of additive material to extrude during the move.

The onLinearExtrude function handles linear moves that extrude the additive material. The tool
position, feedrate and length of material to extrude are passed as the arguments. The onLinearExtrude
function is common to all additive posts.

function onLinearExtrude(_x, y, z, f, _e){
var x = xOutput.format(_x);
var y = yOutput.format(_y);
var z = zOutput.format(_z);
var f = feedOutput.format(_f);
var e = eOutput.format(_e);

Additive Capabilities and Post Processors 9-262
2 AUTODESK cAM post Processor Guide 8/8/23

f(llylizliflie{
writeBlock(gMotionModal.format(1), X, y, z, f, e);

¥

¥

onLinearExtrude Function

9.5.17 onCircularExtrude

\function onCircularExtrude(_clockwise, cx, cy, ¢z, X, vy, z, f e){

Argument Description

_clockwise Set to true if the circular direction is in the clockwise direction, false if
counter-clockwise.

_CX, ey, cz Center coordinates of circle.

X, Y, Z Final point on circle

f The feedrate.

e Length of additive material to extrude during the move.

The onCircularExtrude function handles circular moves that extrude the additive material. The tool
circle parameters, position, feedrate and length of material to extrude are passed as the arguments. The
onCircularExtrude function is common to all additive posts.

function onCircularExtrude(_clockwise, cx, cy, cz, X, Yy, z, f, _e){
var x = xOutput.format(_x);
var y = yOutput.format(_y);
var z = zOutput.format(_z);
var f = feedOutput.format(_f);
var e = eOutput.format(_e);
var start = getCurrentPosition();
var i = iOutput.format(_cx - start.x, 0);
var j = jOutput.format(_cy - start.y, 0);

switch (getCircularPlane()) {

case PLANE_XY:
writeBlock(gMotionModal.format(_clockwise ? 2 : 3), x, Y, 1, |, f, €);
break;

default:
linearize(tolerance);

¥
¥

onCircularExtrude Function

Additive Capabilities and Post Processors 9-263
2 AUTODESK cAM post Processor Guide 8/8/23

9.6 Common Additiwve Functions

There are non-entry functions that are common to Additive post processors. Some of these are defined
in the post processor kernel and some in the post processor itself. The following sections describes these
functions.

9.6.1 getExtruder
| function getExtruder(id) {

Arguments Description

id Extruder number to get information about.

The getExtruder function returns the Extruder variable, which includes information about the specified
extruder. Unlike the entry functions where the extruder base is 0, in the getExtruder function the first
extruder is referenced as id=1, the second as id=2, etc.

writeComment("Material used: " + dimensionFormat.format(getExtruder(1).extrusionLength));
writeComment("Material name: " + getExtruder(1).materialName);

writeComment("Filament diameter: " + dimensionFormat.format(getExtruder(1).filamentDiameter));
writeComment("Nozzle diameter: " + dimensionFormat.format(getExtruder(1).nozzleDiameter));

Sample Calls to getExtruder

9.6.2 isAdditive
| function isAdditive() {

Returns true if any of the operations in the part are Additive in nature.

9.6.3 executeTempTowerFeatures

\ function executeTempTowerFeatures(num) { \

Arguments Description

num The event that triggered the need to change the temperature. Itissetto 1 on

the first call and then successive numbers on the remaining calls.

The executeTempTowerFeatures function is defined in the post processor and sets the temperature based
on the event specified by num. The initial value is 1 and ascends by 1 in each successive call. The
executeTempTowerFeatures function is common to all additive posts that support Temperature Tower
features.

var nextTriggerValue;
var newTemperature;
var maximumEgExtruderTemp = 260;
function executeTempTowerFeatures(num) {
if (settings.maximumExtruderTemp != undefined) {

Additive Capabilities and Post Processors 9-264
2 AUTODESK cAM post Processor Guide 8/8/23

maximumExtruderTemp = settings.maximumExtruderTemp;
}
if (getProperty("_trigger") !'= "disabled") {
var multiplier = getProperty("_trigger") == "height" ? 100 : 1,
var currentValue = getProperty("_trigger") == "height" ?
xyzFormat.format(getCurrentPosition().z * 100) : (num - 1);
if (num == 1) {//initialize
nextTriggerValue = getProperty("_triggerValue™) * multiplier;
newTemperature = getProperty("tempStart™);
}else {
if (currentValue >= nextTriggerValue) {
newTemperature += getProperty("templinterval™);
nextTriggerValue += getProperty("_triggerValue™) * multiplier;
if (newTemperature <= maximumExtruderTemp) {
onExtruderTemp(newTemperature, false, activeExtruder);
}else {

error(subst(
localize("Requested extruder temperature of '%1' exceeds the maximum value of '%2'."),

newTemperature, maximumExtruderTemp)

)i

executeTempTowerFeatures Function

if (typeof executeTempTowerFeatures == "function™) {
executeTempTowerFeatures(num);

¥

Sample Calls to executeTempTowerFeatures

10 Deposition Capabilities and Post Processors

Another additive capability supported by Fusion 360 and the post processor is multi-axis deposition, for
example Directed Energy Deposition (DED). This technology is used to build up a part feature using a
metal depositing method. This chapter discusses the basics of generating a deposition tool path, creating

output, and the details of a deposition post processor.

10.1 Getting Started
This section will give an overview of creating a Deposition tool path using the multi-axis Feature

Construction operation inside of Fusion 360. It will not go into great detail on all of the features of the

Deposition capabilities of Fusion 360, just enough to get you started on post processing.

Deposition Capabilities and Post Processors 10-265

4 AUTODESK cAM Post Processor Guide 8/8/23

You will of course need a model to start with. For the examples in this manual, we will use the Fusion
Keychain model provided as a CAM sample with your installation of Fusion 360. This model contains
subtractive manufacturing operations which can be combined with Additive manufacturing operations as
long as your machine supports both capabilities.

MILLING TURNING ADDITIVE PROBING FABRICATION UTILTES
Data |

#& © CAM Samples «

@ 4X Index, Wrap, Pattern
@ 4X Wrap - FSAE Hub
@ Autodesk Shelf for CNC Router

@ ContactBoundaryPoint

@ Fusion Keychain ‘

ComahPé

@ Gearbox - NC Programs Sorting
@ Housing Probing Example

2 @ Hub_and_Jaws

Sample Deposition Part

You will see the ADDITIVE tab on the MANUFACTURE ribbon. Selecting this tab will display the
Additive menus.

MILLING TURNING ADDITIVE INSPECTION FABRICATION UTILTES
]) =
= S L] s " = '¢' G1 ||—_ —+
MANUFACTURE B]__] @ i = -_i \§-;'(N @ @ l-“i? @
SETUP ™ POSITION MULTHAXIS ¥ MODIFY ACTIONS MANAGE ¥ INSPECT® SELECT™

10.1.1 Finding a Machine

The first step in creating a Deposition tool path is to define the machine that you will be using. Unlike
Subtractive operations where the Machine Configuration is optional, it is required for Deposition
operations since they are considered Additive operations. Pressing the Machine Library icon in the
Additive menus will display the Machine Library dialog. Select the Fusion 360 Library menu and
check the Additive box under Capabilities and the DED box under Technologies. to list the available
Deposition machines. Fusion 360 comes with a single DED machine. You should drag this machine
into your Local library for both convenience and the ability to edit the machine.

Deposition Capabilities and Post Processors 10-266

va AUTODESK cAM Post Processor Guide 8/8/23

ADDITIVE INSPECTION FABRICATION UTILITES

i : e e _
I ESN O SE MEARR = O

AXIS Y MODIFY > ACTIONS ™ MANAGE ™ INSPECT ™ SELECT ™
= Machine Library x
[B Clear filters Filters | Info (7]
~ Capabilities X
Hecen Autodesk Generic DED ==
Document Generic Direct Energy Deposition Machine with export to Simulation and Power| Additive 9
~ My machines o Cutting
YMACHNEs . ..0nly. machines.in My.Machines.can.be edited o
Cloud Milling
Local Turning
~ Linked Inspection
additive ~ Technologies x
haas i
Machines _
DED
Machines P
Machines -
JTF
Machines
SLA
Machines k
ol
~ Fusion 360 library o -
_ Others
Alfawise N
T ~ Issimulation ready
Anycubic Simulation ready
Arcelik ~ Vendor
Autodesk All
BCN3D
Bigrep
Bresser
Close

Finding a DED Machine and Storing in Your Local Library

Once you find your machine you will need to select the post processor that corresponds to this machine.
You can select/change the post processor by right clicking on the Autodesk Generic DED machine and
choosing Select a post.

Generic Direct Energy Depchitink‘lathine withl

4 Post is not selected e
=== # Edit

By copy Ctrl+C

@ Select a post |Pow

@ Autodesk Generic DED

-ﬁ Import
B export
W Delete Del

Selecting/Changing the Post Processor

The Post Library dialog will then be displayed. Select the Fusion 360 library and check the Additive

box to display only the post processors supporting the Additive capabilities. For training purposes, you

will select the Deposition sample post processor. This post processor is not a full post processor, but
Deposition Capabilities and Post Processors 10-267

va AUTODESK cAM Post Processor Guide 8/8/23

rather a template used to modify an existing post processor to include Deposition support. The post
modification will be discussed later in this chapter.

Post Library %
deposition o o T i E Clear filters Filters | Info & 0
Recent Vendor Description ~ Capabilities %
- My posts Autodesk :Deposition sample post processor o Milling
Cloud Turning
Local Setup sheet
¢+ Linked Intermediate
Fusion 360 library o Jet
Cascading
Additive o

Inspection
Machine Simulation
* Vendor

All

Select Cancel

Selecting the Post Processor

You can also create linked folders on your computer to store both the machines and post processors.
You do this by right clicking on the Linked menu and selecting the Link Folder menu. A browser will
be displayed allowing you to select a folder to place your machines/posts.

= iLinked

Esteivdsiiint e T T O PR
¢%* Link folder
FESL L I.-II:‘I_Il' ‘

Selecting a Local Folder for The Machines and Post Processors

10.1.2 Creating an Additive Setup for Deposition

In the Fusion Keychain model you will notice that there is already a subtractive setup defined. For
machines that support both additive and subtractive machining you can define both types of operations
as long as they are in separate setups. The subtractive operations for these machines are exactly the same
as they would be for a purely subtractive (milling) machine. For this sample we will be ignoring the
subtractive setup and working with the additive only.

To create an Additive setup, press the Setup menu, change the Operation Type to Additive, and select the
configuration for your machine by pressing the Select... button under Machine.

Deposition Capabilities and Post Processors 10-268
2 AUTODESK cAM post Processor Guide 8/8/23

+ BROWSER
© SETUP: SETUP3
(P setup Post Process

¥ Machine

I.Iacho ¢ Select...

(=9 Machine Library

Recent

Document o
- My machines
¥ Setup Cloud
Operation Type Addiive

w [Z) Arrangement

<0

additive

Arrangement Type haas
Machines
vLEE Machines
Model X Machines
Machines
[i] oK Cancel Machines

+ Fusion 360 library

Clear filters

+ /0 SE|§ Filters | Info (7]

=T

2 Model
Autodesk Generic DED

Generic Direct Energy Deposition Machine with export to Simulation and Powerj Generic DED
) Post is not selected

Vendor

Autodesk

Description
Generic Direct Energy Deposition

Machine with export to Simulation and
PowerMill

Capability

Dimensions
Machine: X:200mm, Y:200mm, Z:200mm
Part: %0mm, ¥:0mm, Z:0mm

Axis information
Table: YXAC
Head: Z

=0

Select Cancel

Defining an Additive Setup

If you have not already assigned a post processor to this machine you will need to do so now. Do this
by pressing the Edit... button under the Machine prompt. The Machine Configuration will display,

select the Post Processing menu, press the ... button and then select the Deposition sample post
processor.

@ SETUP: SETUP3

& Bl

Information Post Processing
¥ Machine Dimensions
Post Processing @o Waork Offsets
Machine Select... Edit... Post Processar
Autodesk Generic DED |Deposih’0n sample post processor [/ generic deposition m
Post Library
¥ Setup
siti L Clear filters
Operation Type Additive b dE'[:C_\ ! Cn' 8 & ;
Recent b -
¥ Work Coordinate System (WCS5) ~ My posts
Autodesk Deposition sample post processor
Orientation Model orientation ~ Cloud
Local
Crrigin Model origin b)
- Linked
¥ Model post-library
N Posts Safe Start
Fusion 360 library
- N Mrannal |

Associating a Post Processor to a Machine Configuration

Feel free to rename the new setup to Deposition so you know that this is a deposition operation. If you
are going to do both deposition and subtractive operations in the same model, then you will want to

move the Deposition setup above the Subtractive setup.

Deposition Capabilities and Post Processors 10-269

va AUTODESK cAM Post Processor Guide 8/8/23

10.1.3 Creating and Simulating a Deposition Operation
The Deposition operation in Fusion 360 is named Feature Construction and is located in the MULTI-

AXIS pulldown.

TURNING

ADDITIVE INSPECTION FABRICATION UTILITES

3% 00 SE HE

MODIFY ¥ ACTIONS ¥ MAI

lgFeatL* Construction } }

Feature Construction

yhing
ocket1

liel

drill [Rapid out]

1g [Chip breaking]

le

D)

Creates an additive toolpath for building features
using multi-axis deposition technologies. For
example, DED (directed energy deposition).

Build complete features on a planar or non-planar
base surface. The features and the base must be
separate, new bodies and not a single, joined body.

Press Ctrl+/ for more help.

Creating a Deposition Operation

A proper tool should be selected for depositing the material. Fusion 360 supports Electric Arc Wire,
Laser Powder, and Laser Wire Deposition tools. If you don’t already have deposition tools defined, you
can create one using the normal method for creating a tool by pressing the + menu in the Select Tool

form.

© FEATURE CONSTRUCTION : FEATURE CONS

¥ 00 HE =

¥ Tool
Tool Select..
#1 - 80" electric.
¥ Process
Preset Custom hd

Bead Width 0.05in

Depositing Feedrate |40 in/min
Lead-In Feedrate 40 in/min
Lead-Out Feedrate 40 in/min

Plunge Feedrate 40 in/min

OK Cancel

T @ select Tool

~ All

@ o ~ Documents

_autodesk 4a

Setupé
~ Fusion Keyc
Setupl
Setup3
~ Qatest-Dept
Setup:adi

~ Qatest-Mill

Setup for

~ B-axis Test'

G

[m] X
4}'@0@ = 1 Clear filters Filters Info |@

ﬁ Name Corner radius Diameter Flute length Overall length Type ~ = Tool category ({(}
-)) Milling
Fusion Keychain v3 Hole making
0in 0in 0in Electric arc w.. Turning
Cutting
Probe

Holders
°$ © Depositing

~ Type

» B 1-Electric arc wire 0in

B Eectricarc..
7 Laser powder

7 Laser wire

» Unit

Selecting/Defining a Deposition Tool

You will need to select the base the Feature being built lies on and the Feature itself. You can also
generate multi-axis deposition moves by specifying a Forward Tilt and/or a Sideways Tilt.

Deposition Capabilities and Post Processors 10-270

»4 AUTODESK cAM Post Processor Guide 8/8/23

For this exercise you can select the bottom surface of the keychain as the Base and the body of the

keychain as the Feature. The remaining tabs/fields in the Feature Construction form are similar to other
milling operations.

© FEATURE CONSTRUCTION : FEATURE CONSTR

¥ 0 HEHEESE

¥ Base Selection

Base Type Plane b

o= -

¥ Feature Selection

\ Feature [} Body X
Z
[0 Tool Orientation

O Model

OK Cancel

Selecting/Defining the Base Plane and Body for Deposition

To simulate the Deposition toolpath press the Simulate button in the ACTIONS menus. Deposition
toolpaths simulate in the same manner as Subtractive toolpaths, but it is recommended that you place the

cursor over the green slide bar at the bottom of the window, hold down the left mouse button, and move
the mouse to the left and right to visualize the Deposition process.

Deposition Capabilities and Post Processors 10-271
#4 AUTODESK cAM Post Processor Guide 8/8/23

ADDITIVE INSPECTION FABRICATION UTILITES

3% 00 EEH HARR =

MODIFY ¥ ACTIONS ¥ MANAGE ¥ INSPECT ~ SELECT~ .

© Display | @ Info Qi Statistics

» @ Tool

» @ Toolpath

» @ stock

b View

¥ Model

! Opacty — =e—)
Exit Simulation
3
Ko K [>» 20 A
O
¢-Eo Q- 8 5 6 4 @

Simulating the Deposition Toolpath

10.2 The Deposition Sample Post Processor

Unlike additive post processors, which are standalone and created for a specific machine, deposition
capabilities are typically added to existing subtractive post processors for machines that support both
subtractive and deposition operations. The Deposition Sample Post Processor contains the basic
deposition functionality that can be added to a subtractive post. It is designed so that you can easily
copy the required code from this post processor into a post processor that you want to add deposition
capabilities to. In itself, it does not create a valid NC program for any machine.

The sample deposition post processor is broken up into separate sections, the first being code that will be
placed into existing functions, new code to be added to your post processor, and code that is common to
all other post processors used to create the sample output.

10.3 Deposition Specific Functions

You can start the modification of your post processor by copying the deposition specific functions into
your post processor. This code is marked in the sample post processor as follows.

/I Start of Deposition logic

}./.End of Deposition logic

Copy this Code to Your Post Processor
Deposition Capabilities and Post Processors 10-272

4 AUTODESK cAM Post Processor Guide 8/8/23

https://cam.autodesk.com/hsmposts?p=generic_deposition

The following table describes the functions included in the deposition code that is being copied to your
post.

Function Description Requires Editing
setDepositionCommands() Enable to keep deposition on during Yes
transition moves, or disable it to turn
deposition off.
getProcessParameters() Processes the deposition parameters and No
properties related to deposition
operations and stores them in the
processParameters object for use in
other functions.

writeDepositionHeader(tool) Writes out a header containing the Maybe
deposition settings per operation.

writeProcessEquipmentCommands Writes out the commands to turn No

(activate) deposition on or off as defined in the
setDepositionCommands function.

onLayer(index) Entry function called when a new layer Maybe

is started. index specifies the layer. 0 is
the first layer, 1 the second, etc.

onLayerEnd(index) Entry function called when the current Maybe
layer is completed.
onMovemeentDeposition(movement) | Called from the onMovement function. No
It turns on or off the depending on the
movement type.

Deposition Specific Functions

10.3.1 Deposition Common Properties

The deposition functions have properties that are common between most depositing machines. These
properties are listed in the following table.

Title Property Description

Deposit during transitions | depositOnTransitions | Enable to keep deposition on during transition
moves, or disable it to turn deposition off.
Common Deposition Properties

10.3.2 Deposition Commands

The commands to control the deposition operations are defined in the setDepositionCommands function
and will need to be edited to output the correct codes for your machine. It contains the commands to
turn on and off the process equipment for Electric Arc Wire, Laser Powder, and Laser Wire tools.

| case TOOL_DEPOSITING_ELECTRIC_ARC_WIRE: |

Deposition Capabilities and Post Processors 10-273
2 AUTODESK cAM post Processor Guide 8/8/23

Il insert startup codes for electric arc wire here
commands = {
deposition : {on:mFormat.format(101), off:mFormat.format(103)},
processEquipment: {
on: [// commands to turn on process equipment
formatWords(gFormat.format(90), formatComment("ABSOLUTE MODE")),
formatWords(gFormat.format(300), "F" + processParameter.gasFlowRate,
formatComment("SHIELD GAS FLOW RATE")),
formatWords(gFormat.format(301), "V" + processParameter.arcCurrent,
formatComment("ARC VOLTAGE")),
formatWords(gFormat.format(302), "A" + processParameter.arcVVoltage,
formatComment("ARC CURRENT")),
formatWords(gFormat.format(303), "S™ + processParameter.wireSpeed,
formatComment("WIRE SPEED")),
formatWords(mFormat.format(304), formatComment("PROCESS ON™))],
off: [// commands to turn off process equipment
formatWords(mFormat.format(305), formatComment("PROCESS OFF")),
formatWords(gFormat.format(303), "S0", formatComment("WIRE STOP")),
formatWords(gFormat.format(300), "FO000", formatComment("GAS OFF"))]

}
+
break;

Commands to Turn On and Off Deposition

10.3.3 Modifying Existing Functions to Support Deposition

After copying the deposition specific code and making the needed modifications you will need to
modify existing functions in your post processor to support deposition operations.

Function Modification

onSection Add code to define the deposition commands, write the deposition
operation head, and enable the deposition operation.

onSectionEnd Add code to disable the deposition operation.

onMovement Add a call to onMovementDeposition for a deposition operation.

Modification of Existing Functions for Deposition Support

function onSection() {
Il #### Add the code below into the onSection function of your postprocessor ####
if (isDepositionOperation()) {
setDepositionCommands(); // setup for deposition process parameters
writeDepositionHeader(tool);
writeProcessEquipmentCommands(true);

¥

/I Important note, make sure that you disable the spindle speed output for deposition
/[operations in your postprocessor.

Deposition Capabilities and Post Processors 10-274
4 AUTODESK cAM Post Processor Guide 8/8/23

13

function onSectionEnd() {
/I #### Add the code below into the onSectionEnd function of your postprocessor ####
if (isDepositionOperation()) {
writeProcessEquipmentCommands(false);
}
}

Enable a Deposition Operation in onSection

Disable a Deposition Operation in onSectionEnd

I ##### 1f your postprocessor does not have the onMovement function, you have to add the
I entire function below. ####
function onMovement(movement) {

Il #### Add the code below into the onMovement function of your postprocessor. ####

if (isDepositionOperation()) {

onMovementDeposition(movement);

}

}

Call onMovementDeposition from onMovement

Deposition Capabilities and Post Processors 10-275
2 AUTODESK cAM post Processor Guide 8/8/23

Index

?
? conditional..........coeeeveviiicicciee, 3-65
3
3+2 0perationscccceeveeeerveeeeerene 3-56
A
ACCUTACY ..ot 6-187
ACHION ..o, 5-180
activateMachinel-13, 4-117, 7-189, 7-194, 7-202
activatePolarMode...........cccceeeveennenne 7-215
Additive................ 9-239, 10-266, 10-268
Additive operation.........cc.ccceeveenene. 9-246
allowedCircularPlanes 4-75, 4-155
allowHelicalMoves.... 4-75, 4-155, 4-157
allowSpiralMoves...... 4-75, 4-155, 4-157
APPrOACN ..o 8-225
areDifferent.......cccceeveeevecce e, 4-87
argumentcoooeeveeieenienene 3-71, 3-72
AITAY . 3-51, 3-53, 3-72
Array Object Functions..................... 3-52
Autodesk Fusion 360 Post Processor Utility 2-23
B
DedTemp ..o 9-250
Benchmark parts.......cccoovveivnivnnnnene 1-17
Benchmark Parts.........c........... 2-40, 2-44
bookmarks.......cc.ccoevvviiieinienne 2-34, 2-35
booleansccccvveevee i, 3-51
break......ccocoevevive e, 3-64, 3-70
Built-in properties......ccccovvvvvvivinnnene. 4-79
C
CAM Partnerscccoeevvereseeniesennens 1-16
capabilities.......c..ccoceevveivnnnns 4-75, 9-254
CAPABILITY_ADDITIVE 9-254
(0 1T RSP 3-64
CaSE SENSILIVE ...voevvvecreecreecie e, 3-45
certificationLevel..........ccccocveevvevnnenen. 4-75
checkGroup.......ccoovvvveiviiiiiiiiiiie 4-132
circular interpolation............ 4-153, 4-154
circular planecccccceevenennee 4-75, 4-155

Autodesk CAM Post Processor Guide 8/8/23

clearance plane.........ccccoovcennciennnns 4-172
ClOCKWISE......eevvieeeciecie, 4-153, 9-263
CNC HandbooKcccceevvviriircnene, 1-1
collected state..........cocevevveceevieineennen, 4-99
commandscccoeeeeeveeinieenne. 9-250, 9-251
COMMENt. ... 3-46, 4-137
compensateToolLength................... 7-190
conditional function..........ccceveevennen. 3-66
conditional statements............cccu..... 3-63
CONLINUE ..ot 3-70
({0101 -1 1) 4-112
({0101 -1 1) <3 R 4-112
create AXiS.......couevuen. 7-190, 7-199, 7-206
createFormat 4-86, 4-89, 4-90, 7-189
createlncrementalVariable 4-94
createModal...........cccooeeviiieiiiiecienen, 4-94
createModalGroup.........cccccvvevrinnne, 4-95
createOutputVariable............. 4-90, 7-199
createReferenceVariable 4-94
createVariableccccevvenee. 4-94,7-189
CUrrentSECtioNccoeveveeiieecrec e, 4-126
cycle e, 4-159, 4-160, 8-235
Cycle parameterscccvceveecvriennne 4-163
Cycle planes/heights.........cccccoveeee. 4-164
cycleType......cccou.... 4-161, 8-223, 8-232
CYCHIC i 7-199, 7-206
D

Date..ueiiiiiiice e 4-102
deactivatePolarMode....................... 7-215
debug.............. 2-40, 4-169, 6-185, 6-187
Debugging....ccccocevverneneeneresenine 6-184
debugMode.........ccceovriinene. 6-185, 6-187
default......ccccoeveeiiciiie e, 3-64
Deferred variables...........ccccoevvveennenne. 3-59
DeferredVariables..........cccccevevvrennenne. 3-59
defineMachingccoccevvevivviieeiinns 7-190
defineWorkPlane.................. 4-117, 4-123
AEOIEES....cvieeeirreeerree e 7-189
Degrees Per Minutecccovveeene. 7-209
Depositioncccceveveiineneieieenns 10-265
desCription........ccocevvieiienieiecececes 4-75
Diameter Offsetcocceevievecieinnnnn 4-110
disable........covvveiiiee e, 4-92

Index 276

Index

do/While.......ccoooviiiiii 3-70
doesToolPathFitWithinLimits 4-121
download @ POSt........ccceevrveererirererinnnn. 1-3
drilling cycles ... 7-219
drillingSafeDistance..........cc.coceeuee. 4-162
dump.cps.....cceeveennene 4-140, 5-180, 6-184
E
(<10 [1(0] U 1-8, 1-11, 2-23
BISE .. 3-63
enableMachineRewinds.................. 7-193
entry function.........ccceevevvniniinnnnns 6-184
Entry functionsc........... 4-73,9-253
BUIET oo, 4-123
Euler Angle Orderccccooevvveenenne. 4-117
Euler anglesccovvvivniiinnnnnnnn, 4-116
eulerConventionccceevevvivnnnnns 4-116
executeManualNC...........ccccevvvnnnene 5-178
executeTempTowerFeatures........... 9-264
expanded cycles..........c....... 4-160, 4-162
expandManualNC.............ccccceenne. 5-175
expression 3-61, 3-66, 3-68, 3-73
eXpression Operators.........cccevvevenene 3-62
EXIENSION ... 4-75
EXtruder.....coceeveveeveeverenen, 9-250, 9-251
F
Feature Construction........ 10-265, 10-270
Feedrate........ccoovvvvvvnecrnnnnn, 4-153, 9-263
fixed settings.......ccccevvvvreevrnne. 4-98, 4-99
FOr i 3-68, 3-69, 3-70
Force tool changecccccocvevenenee. 4-110
fOrCeABC ... 4-171
FOrCERANY ..o 4-171
forceFeed.......covvvvviniincinie 4-171
forceMultiAxisIndexing.................. 4-116
FOrCeXYZ oo 4-171
format 4-86, 4-87, 4-90, 4-92, 4-95, 4-97
formatComment..........c.cccevevvvvinnnnne 4-138
FormatNumber..........cc.ccovnene. 4-87, 4-90
function.................. 3-47, 3-66, 3-71, 3-72
fused filament fabrication................ 9-239
G
G-COB....ooviiicicececec 1-1
Geometry Probingccccceevevinennne 8-231

Autodesk CAM Post Processor Guide 8/8/23

getABCBYyPreference........... 4-119,7-198
getCircularCenter..........ccccovververnennnn, 4-156
getCircularChordLength 4-156
getCircularNormalcccccceevrnnee, 4-156
getCircularPlanec.ccovveennnne, 4-156
getCircularRadius...........cccoevervenennen, 4-156
getCircularStartRadius 4-156
getCircularSweep........ccccocevvevvenennnn, 4-156
getCommonCycle................. 4-166, 7-219
getCoolantCodes.................. 4-113, 8-230
QetCUITENT......ooiriccecre e 4-92
getCurrentDirection............. 4-119, 7-198
getCurrentPositionccccccveuennne. 4-156
getEuler2 ... 4-117,4-123
getExtruder......ccovvevienennen. 9-251, 9-264
getFinalToolAXisABCc.c....... 7-198
getFirstTool........cccoevveneneen. 4-111, 4-132
getFramePositionc.ccoceevvenenne.. 4-125
getGlobalFinal ToolAXis.................. 7-198
getGloballnitial ToolAxis 7-198
getGlobalParametercccevue... 4-141
getGlobalZRange..........ccccovvervenennnn, 4-103
getHeaderDatecccceevvvvvriennnnn, 4-102
getHeaderVersionccccoceeeenennnne, 4-102
getHelicalDistance..........cc.cccueenee... 4-156
getHelicalOffset..........ccccovveeninnnne, 4-156
getHelicalPitch..................... 4-156, 4-157
getld ..o 4-127
getlnitialToolAxisABC 7-196, 7-198
getLinearMoveLength......... 7-213, 7-215
getMinimumValue..........ccccceeerveriennnn 4-88
getMultiAxisMovelLength............... 7-212
getNextSection.........cccvevvvereeerinnns 4-133
getNextToolccceevverenene. 4-111, 4-131
getNumberOfSections4-103, 4-105, 4-127, 4-
141

getNumberOfTools.......ccccevveriennene, 4-103
getOptimizedPosition............c..c...... 7-202
getOptimizedTCPMode 7-198
getParametercccceevnenenennenn 4-140
getPolarPosition............cccovveeninnnne, 7-215
getPositionU...........ccccvevneen. 4-156, 4-158
getProbingArguments...........c......... 8-225
getProperty......c.ccccvveeivncennnnn, 4-81, 4-85
getRadialMovelLength..................... 7-213
getRadialToolTipMoveLength 7-213
Index 277

Index

getResultingValue.......... 3-68, 4-88, 4-92
getSection..... 4-103, 4-105, 4-126, 4-141
GetTOOl . 4-105
getToolTypeName.........ccccevreenne. 4-103
getWorkPlaneMachineABC4-118, 4-123
gFeedModeModalcccvevrunnene 7-211
Global Section ... 4-74,9-254
global variable................ 3-47,4-74,4-99
gRotationModal..........cccceeervrirnennne. 8-227
groupDefinitions..................... 4-80, 4-83
H
hasGlobalParameterc........... 4-141
hasParameter...........ccocoovveevrereeennnn. 4-140
helical interpolation............. 4-156, 4-157
helical mMove..........cccoevviieiiiens 4-75
high feedrateccccveuenee. 4-145, 4-149
highFeedMapping........cccceevvvvnivnnnnnns 4-75
highFeedrateccccovvvivcniinennn. 4-75
home posSitionccccovvvirncinnnes 4-172
HSM Post Processor Editor 3-46
I

if 3-63, 3-65
incremental..........cccooooviiiiiiinns 4-94
indentationccccevveveeeeiecececeeee, 3-46
Initial Position..........ccceeuee.. 4-110, 4-125
insertToolCall 4-110, 4-133
Inspect Surfacecccoevvevevinennnne. 8-234
intermediate file...........c........... 1-1,9-253
Inverse TIMecccceveereennee 7-209, 7-215
inverseTimeOutput..........ccccvevenenne. 7-211
invokeOnCircular.........c.cccveeneenen. 4-159
invokeOnLinear.........c.ccoceeverinuennn. 4-148
invokeOnLinear5D.........ccccceveneneee. 4-152
invokeONnRapid.........cc.coevvrerinnennn 4-147
invokeOnRapid5D.........ccccoveiines 4-150
ISBD i 7-198
ISAAAITIVE ..., 9-264
isAxialCenterDrillingccccvneee. 4-129
isDepositionOperation 4-131
isDrillingCycle ..o 4-128
isFirstCyclePointccccovveinnnes 4-166
ISFULICITCle. ... 4-156
iIsHelical ..., 4-157
isInspectionOperation 4-130

Autodesk CAM Post Processor Guide 8/8/23

isLastCyclePoint.........cccccocevvviinennnn 4-166
ISLaStSECtioNncceovvervviniinene 4-133
iISMillingCycle ..o 4-130
ISMUIIAXIS ..o 4-123
isMultiAxisConfiguration ...4-123, 7-198
ISNeWWOrkOffset.........ccooeveeriennne, 4-128
isNewWorkPlane.................. 4-107, 4-128
isOptimizedForMachine......7-196, 7-198
isPolarModeActive........c.cceevreennne, 7-215
isSProbeOperationc.ccccoveeene. 4-130
isProbingCycle.........cccooviiniinnnn. 4-166
ISSIgNIficantccoocevveveiiniicene 4-88
isSpindleSpeedDifferent 4-128
ISSPIral.....ccccvviiiee e 4-157
iIsTappingCycle......ccocevevviiiinienenn 4-129
isToolChangeNeeded 4-107, 4-127
J
JavaSCript......ccovviniece 3-45
K
Kernel Settingscccoveevrveiineenennns 4-75
L
LASEN . 1-22
layerCount.........ccooeevvveveieneieceenns 9-250
legal ..o 4-75
Length OFfSetccccevvviiinccnien. 4-110
linear scale........ccccoevvvvreieneineene 7-199
linearize.......cccooveveivinneceeene 4-157
linked foldersc.cc........ 9-241, 10-268
local variables ... 3-47
[0 v 6-187
longDescription.........cceeeveveieeiiennn 4-102
looping statements........ccccoeeverienne 3-68
M
machine configuration..................... 7-189

Machine Configuration1-13, 4-82, 7-190, 9-240,

9-248, 10-266
machineConfiguration4-102, 4-103, 9-250

machining plane........c.ccccceeeveveniennn. 4-159
Manual NC......ooooeeeeeeee e, 5-180
Manual NC command4-99, 4-134, 4-136, 4-137,
4-139, 4-140

Index 278

Index

Manual NC Command 5-174
MaPTOWCS ... 4-75
MapWOrkOrigin........c.coeevreerereneenn. 4-76
Math ODJecCtcccovvviiriciirces 3-49
MALTIX oo 3-56
Matrix Object Assignments.............. 3-56
Matrix Object Attributes................... 3-57
Matrix Object Functions................... 3-58
MALFIXES ..o 6-186
maximumcCircularRadius......4-76, 4-155
maximumCircularSweep4-76, 4-99, 4-155
MU ., 1-20
MITING o 1-19
minimumChordLength.......... 4-76, 4-155
minimumCircularRadius....... 4-76, 4-155
minimumCircularSweep 4-76, 4-155
MINIMUMREVISIONcoceveiveereennen, 4-76
Modal Groups......cccceeevrerereneieninnnns 4-95
ModalGroup........ccoeveinnciinicies 4-96
model origin.........coceovveiiinciree 4-75
MoveLength.......ccoceveiniiiiiiinninnne, 7-213
MOVEMENT......coiieee it 4-145
moveToSafeRetractPosition............ 7-208
multi-axis1-16, 3-56, 4-149, 4-151, 7-188
MUIE-AXIS .o 4-100
Multi-Axis Feedrates........... 7-209, 7-213
N
NC file extension........cccceeeeveeeieinenns 4-75
NC Program.......ccccceeeeervernnnens 1-11, 4-77
NEXt 100l ..ocovvicieiecec e, 4-111
010 0] o] T 3-48, 3-72
Number ObJects.......cccovvrverieninennnnn 3-48
numberOfEXtruders........ocoveevvneee. 9-250
O
0] o] [SRS 3-53, 3-72
offset tables and heads 7-199
onAcceleration..........c..cceeeveeiieinnnns 9-259
onBedTemp....cccvvvvevieiiiiiececieis 9-257
ONCNANGE ... 4-91
onCircular 4-143, 4-153, 4-159
onCircularExtrudecccoevvvvvinnnne 9-263
onClose.......ccceeuvuen. 4-134, 4-135, 9-256

onCommand4-136, 4-143, 4-162, 5-176, 5-179

onComment.............. 4-137,5-176, 6-188

Autodesk CAM Post Processor Guide 8/8/23

ONCYCIE...ciiiiiiicc 4-159
onCycleEnd.........cccccevvennnnenn. 4-168, 8-227
onCyclePoint4-160, 7-219, 8-223, 8-226, 8-235
onDwell.........cooovevevieiien, 4-139, 5-176
onExtruderChange........ccccocoeeerinnne, 9-258
ONEXtruderTemp.....cccceeeververienienen, 9-257
ONEXtrusionReset.........ccccevvevveiennen, 9-258
onFanSpeed.........ccoovvvveveieiececnenn, 9-259
onlmpliedCommand............ 4-135, 4-137

(0] 4N =] o 9-260
ONLAYEr ..o 9-261
onLinear 4-143, 4-146, 4-147, 4-148
onLinear5D4-151, 4-153, 7-196, 7-211, 7-219
onLinearExtrudeccccccevevrieenne, 9-262
onManualNC............ 5-175,5-177,5-178
onMaxAccelerationccccceeunen. 9-260
onMovement........ccoevvveieniieneneenn, 4-145
onMoveToSafeRetractPosition.......7-207
ONOPEN ... 4-99, 7-189, 9-255
onOrientateSpindle.........cc.cccceevnnee, 4-143
onParameter4-139, 4-142, 5-176, 5-180, 8-228,
9-261

onPassThrough..................... 5-177,5-183
onRadiusCompensation................... 4-143
onRapid 4-143, 4-145, 4-147, 9-262

onRapid5D ... 4-149, 4-150, 7-196, 7-219
onReturnFromSafeRetractPosition.7-207

onRewindMachine...........ccccoeenenne.. 4-169
onRewindMachineEntry 7-207
ONROTAEAXES ..o 7-207
onSection.................. 4-106, 4-134, 9-255
onSectionEnd4-107, 4-108, 4-133, 4-134, 8-230
onSpindleSpeedcccocevevrenenne. 4-143
ONTErMINALEcovvvevirierieereeee e 4-135
Operation Comment............ccccveneee. 4-108
Operation NOtes........ccceverererieriennns 4-109
Operation Properties........ccceevvervenen. 4-82
Operation Properties........ccccecevvervennen, 1-13
OPEratorS.....ccoveviiiir i, 3-61
optimize3DPositionsByMachine....4-122
optimizeMachineAngles2 7-194
optimizeMachineAnglesByMachine7-194
optional SKip......cccoevvvvviviiiiiiiein, 4-169
OULPUL UNIES..ovviiiiiiiciece e 4-76
OutputVariable.........c.ccccuenene... 4-90, 4-91
Index 279

Index

P
parametric feedrates..........c.coeuneen.

parseFloat........ccooeivveinienciieens
ParseInt........ccoovveniini e

PArtCoUNt......cccveieciee e
pendingRadiusCompensation.........
permittedCommentChars................
PIVOL POINT...c.oiviiiiiiieeeeees

Plasmaooeeeeeeee e eeeee e

Polar interpolation..........c..cccveueaee.
polarDirectionccccvevveveveeenenn,

post Kernel........ccccoveeeeieciiiciees
Post Library ...,
post processor2-40, 9-240, 9-244, 9-249, 10-
267, 10-269

post processor documentation
Post Processor Forum................ 1-2,1-16
Post Processor ldeas.................. 1-2,1-16
POSt Propertiesccccoovvvveveivinnennnns

preloadTool......ccccvvvvveiiiicece,

Print Settings............ 9-240, 9-244, 9-254

PrNtTIME. ..o
probeMultipleFeatures.....................
probeWorkOffset.........cccccovvvriennnnnn.

Probing............ 1-22, 8-220, 8-231, 8-234

program comment...........ccoceeeeenennn.

program name....... 1-8,1-11, 4-76, 4-100

programComment............ccccevernnene.
ProgramNameccocevveevereeniennne

programNamelsinteger 4-76, 4-100
properties.............. 1-9, 1-11, 4-79, 9-249
Property Table3-53, 4-77, 4-98, 4-99

protecedProbeMoveccocu.......

radiansccoeevvereeneinee 3-49, 7-189
radius compensation4-145, 4-147, 4-151, 4-153
FANGE ..o 7-199, 7-206

repositionToCycleClearance...........

(] (=103 P 4-108, 4-125
[(0] 3-71, 3-72

FOTAIY @XES...c.viveierireeierirerieeserieeniees
Rotary AXis Ordercccovevrennnes
rotary scale........ccooeevinieiinncinnes

Autodesk CAM Post Processor Guide 8/8/23

RS-274D Sample Multi-axis Post Processor....7-

188
S
SECHION....ecvicece e 4-126
SEEA POSL....viireiirieeiree s 1-17
sequence NUMDETcccevvevverierienen, 4-169
setCoolant.........ccccvvvveiviiiiiiiecee, 4-113
setCurrentABC.........ccoovvvivveiec, 7-198
setCurrentPositionAndDirection.....7-215
setMachineConfiguration................ 7-194
setMultiAxisFeedrateccc.e...... 7-193
setPolarFeedMode...........ccccceveueneeee. 7-216
setPolarModecccooeveireincinnns 7-215
SELPIEfiX..cviieiiecce e 4-97
setProbeAngle........ccccocvviviiiiiiennnn, 8-225
setProbeAngleMethod..................... 8-225
SEIPIOPErtY ...ovveviiie e 4-85
SetSingularitycoccevveienncicninnns 7-204
SESUTFIX .ovveveiicecc 4-97
SELHINGS..vevveveeeerieeeieeeee e 9-250, 9-252
setToolLength.......ccocevvvviiiiiciennnne, 7-201
ST UU] SO 4-142,9-243, 10-268
setVirtualTooltip.................. 7-192, 7-202
setWordSeparator 4-100, 4-169
setWorkPlane.........ccoeevevvececenenn, 4-123
setWritelnvocations............... 2-41, 6-185
setWriteStacK.........cccccevvennne, 2-41, 6-186
SNOWNOLES......oeveieieieiee, 4-104, 4-109
simulateccocevereeriennn, 9-247,10-271
singleLineCoolant...........cccceeveunnenn. 4-112
SINQUIANILY......cocvreriiic e 7-203
spatial.......ccccoeviieniiiii 3-49
spindle COdesS.......cooovrireiirerinirienns 4-112
spindleOrientationccccccvvenenne.. 4-162
spindleSpeedDwell.............ccocun..... 4-162
spiral interpolation...........cccccveuneen. 4-157
Spiral MOVE.......ccovvviiiiie e 4-75
stock transfer.......ccccoevvvviiiiiiiiennnns 1-21
strategy.......cccvevvenenne 4-83,4-132,4-133
] 1 [0 3-46, 3-49, 3-72
String Object Functions..........c.c........ 3-50
SWILCN...cviiiicccc e, 3-64, 3-70
T

tapping CyClesScoovvvveviiiiiies 4-167
Index 280

Index

TCP e, 7-209 AV Z<To! (0] SRR 3-53
Templatecocoveeeeiicecece 5-183 Vector Attributesccceeeveveieiiennn, 3-54
tODEY ..o 3-49 Vector Object Functions 3-55
tolerance........ceeueee... 4-76, 4-155, 4-157 VECTIOIS ..ottt 6-186
tool axiS.....ccceevvvrunns 4-149, 4-151, 7-203 virtual tool tip........coceevveveeieiienns 7-202
Tool changeccccevveeieiiicici, 4-110 Visual Studio Code........cccovvververnennnn 2-23
tool length offset.........ccccevvvvivennne. 4-125
1610] VA 712 1o [T 4-132 w
tO0IZRANGE....cooovvssssssrrrrrrrsissiiinn 4-111 WALEHEL ..., 1-22
toPreciseUnit..........cccccveneee. 3-49, 4-170 WCS oo 4-75, 4-113, 4-133
toRa(_j .. 3-49 WCS Probing 8-221
TOUNIE e 3-49 wesDefinitions oo 4-113
EY/CALCR 3-67 WHITE oo 3-69
typeof .. 3-66 Work Coordinate System4-107, 4-113, 8-221
Work Plane4-76, 4-107, 4-115, 4-118, 4-123, 4-
U 133
undefined........ccceveeviiiiiicieceeee, 3-47 WOFKOFTSEL ..o, 4-106
1] 1) 1-8, 1-11, 4-100, 4-106 WHItEBIOCK ..o, 4-169
use ABCPrepositioning................... 4-116 writeComment4-101, 4-102, 4-103, 4-138, 6-
useMultiAxisFeatures 4-116 188
usePolarMode...........ccoovviiincinnes 7-216 WriteDebug.......ccooveiiniiiice 6-188
User SettingsS.......ccovvvvveieiieniinesesiannns 2-26 WHEIN...coieiecc e 4-169, 6-187
WIItENOLES ..., 4-104, 4-140
\% writeRetract.. 4-107, 4-135, 4-172, 7-193
validate ... 367 writeSectionNOteS.........covceveevvevenee. 4-109
Az | TR 3-47 WItSEIUPNOLES .ovvvvvvnns 4-104
variable......3-47, 3-61, 3-66, 3-71, 9-250
Index 281

Autodesk CAM Post Processor Guide 8/8/23

	1 Introduction to Post Processors
	1.1 Scope
	1.2 What is a Post Processor?
	1.3 Finding a Post Processor
	1.4 Downloading and Installing a Post Processor
	1.4.1 Automatically Updating Your Post Processors

	1.5 Running the Post Processor
	1.5.1 Post Process Dialog
	1.5.2 NC Programs
	1.5.3 Machine Configurations

	1.6 Creating/Modifying a Post Processor
	1.7 Testing your Post Processor – Benchmark Parts
	1.7.1 Locating the Benchmark Parts
	1.7.2 Milling Benchmark Part
	1.7.3 Mill/Turn Benchmark Part
	1.7.4 Stock Transfer Benchmark Part
	1.7.5 Probing Benchmark Part

	2 Autodesk Post Processor Editor
	2.1 Installing the Autodesk Post Processor Editor
	2.2 Autodesk Post Processor Settings
	2.3 Left Side Flyout
	2.3.1 Explorer Flyout
	2.3.2 Search Flyout
	2.3.3 Bookmarks Flyout
	2.3.4 Extensions Flyout

	2.4 Autodesk Post Processor Editor Features
	2.4.1 Auto Completion
	2.4.2 Syntax Checking
	2.4.3 Hiding Sections of Code
	2.4.4 Matching Brackets
	2.4.5 Go to Line Number
	2.4.6 Opening a File in a Separate Window
	2.4.7 Shortcut Keys
	2.4.8 Running Commands

	2.5 Running/Debugging the Post
	2.5.1 Autodesk Post Processor Commands
	2.5.2 The Post Processor Properties
	2.5.3 Running the Post Processor
	2.5.4 Creating Your Own CNC Intermediate Files

	3 JavaScript Overview
	3.1 Overview
	3.2 JavaScript Syntax
	3.3 Variables
	3.3.1 Numbers
	3.3.2 Strings
	3.3.3 Booleans
	3.3.4 Arrays
	3.3.5 Objects
	3.3.6 The Vector Object
	3.3.7 The Matrix Object
	3.3.8 Deferred Variables

	3.4 Expressions
	3.5 Conditional Statements
	3.5.1 The if Statement
	3.5.2 The switch Statement
	3.5.3 The Conditional Operator (?)
	3.5.4 The typeof Operator
	3.5.5 The conditional Function
	3.5.6 try / catch
	3.5.7 The validate Function
	3.5.8 Comparing Real Values

	3.6 Looping Statements
	3.6.1 The for Loop
	3.6.2 The for/in Loop
	3.6.3 The while Loop
	3.6.4 The do/while Loop
	3.6.5 The break Statement
	3.6.6 The continue Statement

	3.7 Functions
	3.7.1 The function Statement
	3.7.2 Calling a function
	3.7.3 The return Statement

	4 Entry Functions
	4.1 Global Section
	4.1.1 Kernel Settings
	4.1.2 Property Table
	4.1.3 Property Scopes
	4.1.4 Operation Properties
	4.1.5 Property Groups
	4.1.6 Accessing Properties
	4.1.7 Format Definitions
	4.1.8 Deprecated Format Specifiers
	4.1.9 Output Variable Definitions
	4.1.10 Deprecated Output Variable Definitions
	4.1.11 Modal Groups
	4.1.12 Fixed Settings
	4.1.13 Collected State

	4.2 onOpen
	4.2.1 Define Settings Based on Post Properties
	4.2.2 Define the Multi-Axis Configuration
	4.2.3 Output Program Name and Header
	4.2.4 Performing General Checks
	4.2.5 Output Initial Startup Codes

	4.3 onSection
	4.3.1 Ending the Previous Operation
	4.3.2 Operation Comments and Notes
	4.3.3 Tool Change
	4.3.4 Work Coordinate System Offsets
	4.3.5 Work Plane – 3+2 Operations
	4.3.6 Initial Position

	4.4 The section Object
	4.4.1 currentSection
	4.4.2 getSection
	4.4.3 getNumberOfSections
	4.4.4 getId
	4.4.5 isToolChangeNeeded
	4.4.6 isNewWorkPlane
	4.4.7 isNewWorkOffset
	4.4.8 isSpindleSpeedDifferent
	4.4.9 isDrillingCycle
	4.4.10 isTappingCycle
	4.4.11 isAxialCenterDrilling
	4.4.12 isMillingCycle
	4.4.13 isProbeOperation
	4.4.14 isInspectionOperation
	4.4.15 isDepositionOperation
	4.4.16 probeWorkOffset
	4.4.17 getNextTool
	4.4.18 getFirstTool
	4.4.19 toolZRange
	4.4.20 strategy
	4.4.21 checkGroup

	4.5 onSectionEnd
	4.6 onClose
	4.7 onTerminate
	4.8 onCommand
	4.9 onComment
	4.10 onDwell
	4.11 onParameter
	4.11.1 getParameter Function
	4.11.2 getGlobalParameter Function

	4.12 onPassThrough
	4.13 onSpindleSpeed
	4.14 onOrientateSpindle
	4.15 onRadiusCompensation
	4.16 onMovement
	4.17 onRapid
	4.18 invokeOnRapid
	4.19 onLinear
	4.20 invokeOnLinear
	4.21 onRapid5D
	4.22 invokeOnRapid5D
	4.23 onLinear5D
	4.24 invokeOnLinear5D
	4.25 onCircular
	4.25.1 Circular Interpolation Settings
	4.25.2 Circular Interpolation Common Functions
	4.25.3 Helical Interpolation
	4.25.4 Spiral Interpolation
	4.25.5 3-D Circular Interpolation

	4.26 invokeOnCircular
	4.27 onCycle
	4.28 onCyclePoint
	4.28.1 Drilling Cycle Types
	4.28.2 Cycle parameters
	4.28.3 The Cycle Planes/Heights
	4.28.4 Common Cycle Functions
	4.28.5 Pitch Output with Tapping Cycles

	4.29 onCycleEnd
	4.30 onRewindMachine
	4.31 Common Functions
	4.31.1 writeln
	4.31.2 writeBlock
	4.31.3 toPreciseUnit
	4.31.4 force---
	4.31.5 writeRetract

	5 Manual NC Commands
	5.1 onManualNC and expandManualNC
	5.1.1 Sample onManualNC Function
	5.1.2 Delay Processing of Manual NC Commands

	5.2 onCommand
	5.3 onParameter
	5.4 onPassThrough

	6 Debugging
	6.1 Overview
	6.2 The dump.cps Post Processor
	6.3 Debugging using Post Processor Settings
	6.3.1 debugMode
	6.3.2 setWriteInvocations
	6.3.3 setWriteStack

	6.4 Functions used with Debugging
	6.4.1 debug
	6.4.2 log
	6.4.3 writeln
	6.4.4 writeComment
	6.4.5 writeDebug

	7 Multi-Axis Post Processors
	7.1 Adding Basic Multi-Axis Capabilities
	7.1.1 Create the Rotary Axes Formats
	7.1.2 The Machine Configuration Settings and Functions
	7.1.3 Creating a Hardcoded Multi-Axis Machine Configuration
	7.1.4 Calculating the Rotary Angles
	7.1.5 Output Initial Rotary Position
	7.1.6 Create the onRapid5D and onLinear5D Functions
	7.1.7 Multi-Axis Common Functions

	7.2 Output of Continuous Rotary Axis on a Rotary Scale
	7.3 Adjusting the Points for Offset Rotary Axes
	7.4 Calculation of the Multi-Axis Tool Position
	7.5 Handling the Singularity Issue in the Post Processor
	7.6 Rewinding of the Rotary Axes when Limits are Reached
	7.7 Multi-Axis Feedrates
	7.8 Polar Interpolation
	7.8.1 Polar Interpolation Functions
	7.8.2 Manual NC Command to Enable Polar Interpolation
	7.8.3 Calculating the Polar Interpolation Initial Angle
	7.8.4 Initializing Polar Interpolation
	7.8.5 Disabling Polar Interpolation
	7.8.6 Enabling Polar Interpolation in Drilling Cycles

	8 Adding Support for Probing
	8.1 WCS Probing
	8.1.1 Probing Operations
	8.1.2 Adding the Core Probing Logic
	8.1.3 Adding the Supporting Probing Logic
	8.1.4 Adding Support for Printing Probe Results

	8.2 Geometry Probing
	8.3 Inspect Surface
	8.3.1 Inspect Surface Operations
	8.3.2 Inspection Parameters
	8.3.3 Adding the Core Inspect Surface Logic
	8.3.4 Adding the Supporting Inspect Surface Logic

	9 Additive Capabilities and Post Processors
	9.1 Getting Started
	9.1.1 Finding a Machine
	9.1.2 Creating an Additive Setup
	9.1.3 Creating and Simulating an Additive Operation

	9.2 Creating a New Machine Configuration
	9.3 Additive Common Properties
	9.4 Additive Variables
	9.4.1 The machineConfiguration Object
	9.4.2 The Extruder Object
	9.4.3 The commands Object
	9.4.4 The settings Object

	9.5 Additive Entry Functions
	9.5.1 Global Section
	9.5.2 onOpen
	9.5.3 onSection
	9.5.4 onClose
	9.5.5 onBedTemp
	9.5.6 onExtruderTemp
	9.5.7 onExtruderChange
	9.5.8 onExtrusionReset
	9.5.9 onFanSpeed
	9.5.10 onAcceleration
	9.5.11 onMaxAcceleration
	9.5.12 onJerk
	9.5.13 onLayer
	9.5.14 onParameter
	9.5.15 onRapid
	9.5.16 onLinearExtrude
	9.5.17 onCircularExtrude

	9.6 Common Additive Functions
	9.6.1 getExtruder
	9.6.2 isAdditive
	9.6.3 executeTempTowerFeatures

	10 Deposition Capabilities and Post Processors
	10.1 Getting Started
	10.1.1 Finding a Machine
	10.1.2 Creating an Additive Setup for Deposition
	10.1.3 Creating and Simulating a Deposition Operation

	10.2 The Deposition Sample Post Processor
	10.3 Deposition Specific Functions
	10.3.1 Deposition Common Properties
	10.3.2 Deposition Commands
	10.3.3 Modifying Existing Functions to Support Deposition

