
CAM Post Processor Guide 8/8/23

Copyright © 2018-2022 Autodesk, Inc. All rights reserved.

Post Processor Training Guide
 For use with Fusion 360 CAM, Inventor CAM, HSMWorks

Table of Contents

 I

 CAM Post Processor Guide 8/8/23

1 Introduction to Post Processors ... 1-1
1.1 Scope .. 1-1

1.2 What is a Post Processor? ... 1-1
1.3 Finding a Post Processor ... 1-2
1.4 Downloading and Installing a Post Processor.. 1-3

1.4.1 Automatically Updating Your Post Processors .. 1-6
1.5 Running the Post Processor .. 1-6

1.5.1 Post Process Dialog .. 1-7

1.5.2 NC Programs ..1-11
1.5.3 Machine Configurations ..1-13

1.6 Creating/Modifying a Post Processor ...1-16

1.7 Testing your Post Processor – Benchmark Parts ...1-17
1.7.1 Locating the Benchmark Parts...1-18
1.7.2 Milling Benchmark Part...1-19

1.7.3 Mill/Turn Benchmark Part ...1-20
1.7.4 Stock Transfer Benchmark Part ..1-21
1.7.5 Probing Benchmark Part ..1-22

2 Autodesk Post Processor Editor...2-23
2.1 Installing the Autodesk Post Processor Editor ...2-23

2.2 Autodesk Post Processor Settings...2-26
2.3 Left Side Flyout ...2-29

2.3.1 Explorer Flyout...2-29

2.3.2 Search Flyout ..2-31
2.3.3 Bookmarks Flyout ..2-34
2.3.4 Extensions Flyout ...2-34

2.4 Autodesk Post Processor Editor Features ..2-35
2.4.1 Auto Completion ..2-36
2.4.2 Syntax Checking ..2-36

2.4.3 Hiding Sections of Code ..2-37
2.4.4 Matching Brackets ...2-37
2.4.5 Go to Line Number ..2-38

2.4.6 Opening a File in a Separate Window ..2-38
2.4.7 Shortcut Keys ...2-38
2.4.8 Running Commands ...2-40

2.5 Running/Debugging the Post ..2-40
2.5.1 Autodesk Post Processor Commands..2-40
2.5.2 The Post Processor Properties ...2-41

2.5.3 Running the Post Processor ...2-42
2.5.4 Creating Your Own CNC Intermediate Files ...2-44

3 JavaScript Overview...3-45
3.1 Overview ..3-45
3.2 JavaScript Syntax ..3-45

3.3 Variables ..3-47
3.3.1 Numbers ..3-48

Table of Contents

 II

 CAM Post Processor Guide 8/8/23

3.3.2 Strings ...3-49
3.3.3 Booleans..3-51

3.3.4 Arrays ..3-51
3.3.5 Objects ..3-53
3.3.6 The Vector Object ..3-53

3.3.7 The Matrix Object ..3-56
3.3.8 Deferred Variables ...3-59

3.4 Expressions ..3-61

3.5 Conditional Statements ...3-63
3.5.1 The if Statement ...3-63
3.5.2 The switch Statement ...3-64

3.5.3 The Conditional Operator (?) ..3-65
3.5.4 The typeof Operator ...3-66
3.5.5 The conditional Function ...3-66

3.5.6 try / catch ..3-67
3.5.7 The validate Function...3-67
3.5.8 Comparing Real Values ...3-68

3.6 Looping Statements ...3-68
3.6.1 The for Loop ...3-68
3.6.2 The for/in Loop ..3-69

3.6.3 The while Loop ..3-69
3.6.4 The do/while Loop ...3-70
3.6.5 The break Statement...3-70

3.6.6 The continue Statement ...3-70
3.7 Functions ..3-71

3.7.1 The function Statement ..3-71

3.7.2 Calling a function ...3-72
3.7.3 The return Statement ..3-72

4 Entry Functions ...4-73
4.1 Global Section..4-74

4.1.1 Kernel Settings ...4-75

4.1.2 Property Table ..4-77
4.1.3 Property Scopes ..4-81
4.1.4 Operation Properties ..4-82

4.1.5 Property Groups ...4-83
4.1.6 Accessing Properties ..4-85
4.1.7 Format Definitions ...4-86

4.1.8 Deprecated Format Specifiers ...4-89
4.1.9 Output Variable Definitions ..4-90
4.1.10 Deprecated Output Variable Definitions ..4-94

4.1.11 Modal Groups ...4-95
4.1.12 Fixed Settings ...4-98
4.1.13 Collected State ..4-99

4.2 onOpen ...4-99
4.2.1 Define Settings Based on Post Properties ...4-99

Table of Contents

 III

 CAM Post Processor Guide 8/8/23

4.2.2 Define the Multi-Axis Configuration ... 4-100
4.2.3 Output Program Name and Header .. 4-100

4.2.4 Performing General Checks.. 4-105
4.2.5 Output Initial Startup Codes ... 4-106

4.3 onSection ... 4-106

4.3.1 Ending the Previous Operation... 4-107
4.3.2 Operation Comments and Notes .. 4-108
4.3.3 Tool Change .. 4-110

4.3.4 Work Coordinate System Offsets ... 4-113
4.3.5 Work Plane – 3+2 Operations .. 4-115
4.3.6 Initial Position ... 4-125

4.4 The section Object .. 4-126
4.4.1 currentSection .. 4-126
4.4.2 getSection .. 4-126

4.4.3 getNumberOfSections ... 4-127
4.4.4 getId.. 4-127
4.4.5 isToolChangeNeeded .. 4-127

4.4.6 isNewWorkPlane ... 4-128
4.4.7 isNewWorkOffset.. 4-128
4.4.8 isSpindleSpeedDifferent ... 4-128

4.4.9 isDrillingCycle .. 4-128
4.4.10 isTappingCycle.. 4-129
4.4.11 isAxialCenterDrilling .. 4-129

4.4.12 isMillingCycle ... 4-130
4.4.13 isProbeOperation ... 4-130
4.4.14 isInspectionOperation ... 4-130

4.4.15 isDepositionOperation .. 4-131
4.4.16 probeWorkOffset... 4-131
4.4.17 getNextTool ... 4-131

4.4.18 getFirstTool ... 4-132
4.4.19 toolZRange .. 4-132
4.4.20 strategy ... 4-132

4.4.21 checkGroup.. 4-132
4.5 onSectionEnd .. 4-133
4.6 onClose .. 4-134

4.7 onTerminate .. 4-135
4.8 onCommand .. 4-136
4.9 onComment ... 4-137

4.10 onDwell ... 4-138
4.11 onParameter .. 4-139

4.11.1 getParameter Function .. 4-140

4.11.2 getGlobalParameter Function ... 4-141
4.12 onPassThrough ... 4-142
4.13 onSpindleSpeed .. 4-142

4.14 onOrientateSpindle ... 4-143
4.15 onRadiusCompensation.. 4-143

Table of Contents

 IV

 CAM Post Processor Guide 8/8/23

4.16 onMovement ... 4-144
4.17 onRapid ... 4-145

4.18 invokeOnRapid ... 4-147
4.19 onLinear .. 4-147
4.20 invokeOnLinear .. 4-148

4.21 onRapid5D .. 4-149
4.22 invokeOnRapid5D .. 4-150
4.23 onLinear5D ... 4-150

4.24 invokeOnLinear5D ... 4-152
4.25 onCircular.. 4-153

4.25.1 Circular Interpolation Settings ... 4-154

4.25.2 Circular Interpolation Common Functions .. 4-156
4.25.3 Helical Interpolation ... 4-157
4.25.4 Spiral Interpolation ... 4-157

4.25.5 3-D Circular Interpolation .. 4-158
4.26 invokeOnCircular ... 4-159
4.27 onCycle ... 4-159

4.28 onCyclePoint ... 4-159
4.28.1 Drilling Cycle Types ... 4-161
4.28.2 Cycle parameters ... 4-163

4.28.3 The Cycle Planes/Heights ... 4-164
4.28.4 Common Cycle Functions .. 4-165
4.28.5 Pitch Output with Tapping Cycles ... 4-167

4.29 onCycleEnd ... 4-168
4.30 onRewindMachine .. 4-168
4.31 Common Functions .. 4-169

4.31.1 writeln .. 4-169
4.31.2 writeBlock ... 4-169
4.31.3 toPreciseUnit ... 4-170

4.31.4 force--- ... 4-171
4.31.5 writeRetract ... 4-172

5 Manual NC Commands ... 5-174
5.1 onManualNC and expandManualNC .. 5-175

5.1.1 Sample onManualNC Function .. 5-177

5.1.2 Delay Processing of Manual NC Commands .. 5-177
5.2 onCommand .. 5-179
5.3 onParameter .. 5-180

5.4 onPassThrough.. 5-183

6 Debugging .. 6-184
6.1 Overview ... 6-184
6.2 The dump.cps Post Processor .. 6-184
6.3 Debugging using Post Processor Settings ... 6-185

6.3.1 debugMode .. 6-185
6.3.2 setWriteInvocations... 6-185

Table of Contents

 V

 CAM Post Processor Guide 8/8/23

6.3.3 setWriteStack ... 6-186
6.4 Functions used with Debugging .. 6-186

6.4.1 debug .. 6-187
6.4.2 log ... 6-187
6.4.3 writeln .. 6-187

6.4.4 writeComment ... 6-188
6.4.5 writeDebug .. 6-188

7 Multi-Axis Post Processors ... 7-188
7.1 Adding Basic Multi-Axis Capabilities .. 7-188

7.1.1 Create the Rotary Axes Formats .. 7-189

7.1.2 The Machine Configuration Settings and Functions... 7-189
7.1.3 Creating a Hardcoded Multi-Axis Machine Configuration .. 7-190
7.1.4 Calculating the Rotary Angles.. 7-194

7.1.5 Output Initial Rotary Position .. 7-195
7.1.6 Create the onRapid5D and onLinear5D Functions ... 7-196
7.1.7 Multi-Axis Common Functions.. 7-197

7.2 Output of Continuous Rotary Axis on a Rotary Scale ... 7-199
7.3 Adjusting the Points for Offset Rotary Axes .. 7-199
7.4 Calculation of the Multi-Axis Tool Position .. 7-202

7.5 Handling the Singularity Issue in the Post Processor ... 7-203
7.6 Rewinding of the Rotary Axes when Limits are Reached ... 7-205
7.7 Multi-Axis Feedrates .. 7-209

7.8 Polar Interpolation .. 7-213
7.8.1 Polar Interpolation Functions ... 7-214
7.8.2 Manual NC Command to Enable Polar Interpolation ... 7-216

7.8.3 Calculating the Polar Interpolation Initial Angle .. 7-217
7.8.4 Initializing Polar Interpolation ... 7-218
7.8.5 Disabling Polar Interpolation ... 7-219

7.8.6 Enabling Polar Interpolation in Drilling Cycles .. 7-219

8 Adding Support for Probing.. 8-220
8.1 WCS Probing .. 8-221

8.1.1 Probing Operations.. 8-222
8.1.2 Adding the Core Probing Logic ... 8-225

8.1.3 Adding the Supporting Probing Logic ... 8-227
8.1.4 Adding Support for Printing Probe Results ... 8-230

8.2 Geometry Probing... 8-231

8.3 Inspect Surface .. 8-234
8.3.1 Inspect Surface Operations ... 8-235
8.3.2 Inspection Parameters ... 8-236

8.3.3 Adding the Core Inspect Surface Logic ... 8-236
8.3.4 Adding the Supporting Inspect Surface Logic .. 8-238

9 Additive Capabilities and Post Processors ... 9-239
9.1 Getting Started .. 9-239

Table of Contents

 VI

 CAM Post Processor Guide 8/8/23

9.1.1 Finding a Machine... 9-240
9.1.2 Creating an Additive Setup... 9-243

9.1.3 Creating and Simulating an Additive Operation ... 9-246
9.2 Creating a New Machine Configuration ... 9-248
9.3 Additive Common Properties .. 9-249

9.4 Additive Variables .. 9-250
9.4.1 The machineConfiguration Object ... 9-250
9.4.2 The Extruder Object .. 9-251

9.4.3 The commands Object .. 9-251
9.4.4 The settings Object .. 9-252

9.5 Additive Entry Functions ... 9-253

9.5.1 Global Section ... 9-254
9.5.2 onOpen ... 9-255
9.5.3 onSection ... 9-255

9.5.4 onClose .. 9-256
9.5.5 onBedTemp ... 9-256
9.5.6 onExtruderTemp.. 9-257

9.5.7 onExtruderChange... 9-258
9.5.8 onExtrusionReset .. 9-258
9.5.9 onFanSpeed ... 9-259

9.5.10 onAcceleration... 9-259
9.5.11 onMaxAcceleration ... 9-260
9.5.12 onJerk ... 9-260

9.5.13 onLayer .. 9-261
9.5.14 onParameter ... 9-261
9.5.15 onRapid .. 9-262

9.5.16 onLinearExtrude .. 9-262
9.5.17 onCircularExtrude ... 9-263

9.6 Common Additive Functions ... 9-264

9.6.1 getExtruder .. 9-264
9.6.2 isAdditive ... 9-264
9.6.3 executeTempTowerFeatures ... 9-264

10 Deposition Capabilities and Post Processors ... 10-265
10.1 Getting Started .. 10-265

10.1.1 Finding a Machine... 10-266
10.1.2 Creating an Additive Setup for Deposition ... 10-268
10.1.3 Creating and Simulating a Deposition Operation ... 10-270

10.2 The Deposition Sample Post Processor... 10-272
10.3 Deposition Specific Functions ... 10-272

10.3.1 Deposition Common Properties ... 10-273

10.3.2 Deposition Commands .. 10-273
10.3.3 Modifying Existing Functions to Support Deposition .. 10-274

Introduction to Post Processors 1-1

 CAM Post Processor Guide 8/8/23

1 Introduction to Post Processors

1.1 Scope

This manual is intended for those who wish to make their own edits to existing post processors. The

scope of the manual covers everything you will need to get started; an introduction to the recommended

editor (Autodesk Fusion 360 Post Processor Editor), a JavaScript overview (the language of Autodesk

post processors), in-depth coverage of the callback functions (onOpen, onSection, onLinear, etc.), and a

lot more information useful for working with the Autodesk post processor system.

It is expected that you have some programming experience and are knowledgeable in the requirements

of the machine tool that you will be creating a post processor for.

1.2 What is a Post Processor?

 A post processor, sometimes simply referred to as a "post", is the link between the CAM system and

your CNC machine. A CAM system will typically output a neutral intermediate file that contains

information about each toolpath operation like tool data, type of operation (drilling, milling, turning,

etc.), and tool center line data. This intermediate file is fed into the post processor where it's translated

into the language that a CNC machine understands. In most cases this language is a form of ISO/EIA

standard G-code, even though some controls have their own proprietary language or use a more

conversational language. All examples in this manual uses the ISO/EIA G-code format.

If you would like a bit more information on the G-code format the CNC Handbook contains a lot of

useful information including a further explanation of the G-code format in Chapter 5 CNC Programming

Language.

Though most controls recognize the G-code format the machine configuration can be different and some

codes could be supported on one machine and not another, or the codes could be interpreted differently,

for example one machine may support circular interpolation while another requires linear moves to cut

the circle, which is why you will probably need a separate post processor for each of your machine tools.

https://www.autodesk.com/campaigns/fundamentals-of-cnc-machining

Introduction to Post Processors 1-2

 CAM Post Processor Guide 8/8/23

1.3 Finding a Post Processor

The first step in creating a post processor is to find an existing post that comes close to matching your

requirements and start with that post processor as a seed. You will never create a post processor from

scratch. You will find all the generic posts created by Autodesk on our online Post Library. From here

you can search for the machine you are looking for by the machine type, the manufacturer of the

machine or control, or by post processor name.

Other places to check for a post processor include the HSM Post Processor Forum or HSM Post

Processor Ideas.

It is possible that Autodesk has already created a post processor for your machine, but has not officially

released it yet. These posts are considered to be in Beta mode and are awaiting testing from the

community before placing into production. You can visit the HSM Post Processor Ideas site and search

for your post here. This site contains post processor requests from users and links to the posts that are in

Beta mode. You can search for your machine and/or controller to see if there is a post processor

available.

https://cam.autodesk.com/hsmposts?
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent

Introduction to Post Processors 1-3

 CAM Post Processor Guide 8/8/23

Searching For a Post Processor on Ideas or the Forum

Beta Post Processor Found on HSM Post Processor Ideas

If your post processor is not found, then you should search the HSM Post Processor Forum using the

same method you used on the HSM Post Processor Ideas site. The Post Processor Forum is used by the

HSM community to ask questions and help each other out. It is possible that another user has created a

post to run your machine.

You should always take care when running output from a post processor for the first time on your

machine, no matter where the post processor comes from. Even though the post processor refers to

your exact name, it may be setup for options that your machine does not have or the output may not be

in the exact format that you are used to running on the machine.

1.4 Downloading and Installing a Post Processor

Once you find the post processor that closely matches your machine you will need to download it and

install it in a common folder on your computer. If you are working on a network with others then this

should be in a networked folder so everyone in your company has access to the same library of post

processors.

https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218

Introduction to Post Processors 1-4

 CAM Post Processor Guide 8/8/23

Selecting the Local Post Processor Folder

When using Fusion 360 it is recommended that you enable cloud posts and place it in your Asset

Library. This way post processors, tool libraries, and templates will be synched across devices and users

at a company.

Enabling Cloud Post Processors in Fusion 360

Introduction to Post Processors 1-5

 CAM Post Processor Guide 8/8/23

Double Click the CAMPosts Folder and then Press the Upload Button

Once you have uploaded your post(s) to the Cloud Library you can access these from Fusion 360. You

do this by pressing the Setup button in the Post Process dialog and selecting your post from the

dropdown menu.

Selecting Your Post from the Cloud Library

Introduction to Post Processors 1-6

 CAM Post Processor Guide 8/8/23

In all cases you will want to avoid placing posts in the production install folder as these can be

overwritten when HSM is updated. Downloading your posts to a separate folder means that you can

reduce your list of post processors that show up in the Post Process dialog to those that you use in your

shop.

1.4.1 Automatically Updating Your Post Processors

It is possible to have Fusion 360 automatically search for the latest versions and additions of post

processors and machines when they become available. This is accomplished by checking the

Automatically get latest Post and Machines in the Preview section of the User Preferences.

Selecting the Post Process Dialog in Fusion

1.5 Running the Post Processor

The post processor can be run from the Post Process dialog or from an NC Program in Fusion 360. You

can either select the Post Process button or right click on an Operation/NC program and select Post

Process from the menu. Multiple operations can be selected and post processed in a single operation.

Introduction to Post Processors 1-7

 CAM Post Processor Guide 8/8/23

 Fusion Inventor HSMWorks Right Click

1.5.1 Post Process Dialog

Fusion 360 uses the NC Programs dialog as its interface to the post processor, while Inventor CAM and

HSMWorks use the legacy Post Process dialog. The display of the Post properties in the NC Programs

dialog is more advanced, as it respects the group names from the property table and displays them in

collapsible tabs.

Fusion 360 Post Process Dialog

Field Description

Use machine configuration Check this box to assign a Machine Configuration to the post

processor. Typically you would assign a Machine Configuration

to the Manufacturing Setup in Fusion 360. If a Machine

Configuration is assigned to the Manufacturing Setup, then this

Introduction to Post Processors 1-8

 CAM Post Processor Guide 8/8/23

Field Description

box will be checked and the Machine Configuration will be

displayed below this field.

Post Specifies the post processor you want to run. The dropdown

arrow in this field will display a list of recently used post

processors. Pressing the button will open a popup dialog that

includes a list of linked folders and available posts that you can

select from. The button allows you to edit the post processor.

Use cascading post Used to select a cascading post. A cascading post is usually a 3 rd

party post processor or verification program that is run after the

Fusion 360 post processor.

Name or number The name/number of the program. This name/number will

usually be output as the first line of the NC file, usually as an

Oxxxx code when a number is required or as a comment (xxxx)

if a name is allowed. The post processor controls whether an

alphanumeric name is allowed in this field or if a number must

be entered. This is defined by the programNameIsInteger =

true; statement in the post processor and can be set to either true

(number required) or false (alphanumeric name allowed).

File name The output NC file name. This will default to the program

name/number.

Comment The program comment, which is usually output as a comment at

the top of the NC file.

Output folder Specifies the folder for the output NC file. Pressing the

button will open this folder in a File Explorer window. Pressing

the button opens a folder browser window to select the folder

for the NC file.

Post to Fusion Team Saves the output file to the cloud. The Fusion Team output

folder field will be displayed if this box is checked, allowing you

to select the cloud folder to post to.

NC extension Contains the default file extension for the output NC file as

defined in the post processor. You cannot override the file

extension.

Unit Controls the output units of the NC file. This is usually set to

use the same units as the model, but can be overridden to output

in either Inch or Millimeters.

Open NC file in editor Check this box if you want to open the output NC file in an

editor after post processing is finished. The editor used is

defined in your Fusion 360 Preferences dialog in the General-

>Manufacture-> External editor field.

Create in browser Check this box if you want an NC Program automatically

created with the operations you are posting against. Be

forewarned, if this box remains checked each time you post

process outside of an NC Program, then you will continue to get

new NC Programs added to the list.

Introduction to Post Processors 1-9

 CAM Post Processor Guide 8/8/23

Field Description

Property Table Displays the properties defined in the post processor and allows

you to modify these properties. Please see the Property Table

section in this manual for a full description of post processor

properties.
Fusion 360 Post Process Dialog Fields

Selecting a Post Processor in Fusion 360

You select the folder for the post processor and the post processor itself by pressing the button next

to the Post field. You can right click on the Linked menu in the Post Library dialog to add a new folder

to select post processors from. The new folder will be displayed in the Linked menu.

Selecting a New Folder for Post Processors

Introduction to Post Processors 1-10

 CAM Post Processor Guide 8/8/23

Inventor CAM and HSMWorks Legacy Post Process Dialog

Field Description

Configuration Folder Specifies the folder location of the post processor you want to

run. You can press the button to open a folder browser

window to select the post processor. This field is only displayed

in the legacy dialog, but you can select the folder in the NC

Programs dialog by pressing the button next to the Post field.

Setup Used to select preinstalled post processor libraries or to select a

cascading post. A cascading post is usually a 3rd party post

processor or verification program that is run after the HSM post

processor. This field is only displayed in the legacy dialog.

Post Configuration Defines the post processor you want to run. The available posts

are listed in a dropdown menu. There are filters that will limit

the post processors listed, including a Search Text field,

Capabilities (milling, turning, etc.), and Vendors.

Output folder Specifies the folder for the output NC file. Pressing the

button opens a folder browser window to select the folder for the

NC file. The Open folder button opens a file browser in this

folder.

NC extension Contains the default file extension for the output NC file as

defined in the post processor. You can override the file

extension in this field.

Introduction to Post Processors 1-11

 CAM Post Processor Guide 8/8/23

Field Description

Program name or number The name/number of the output NC file. This name/number will

usually be output as the first line of the NC file, usually as an

Oxxxx code when a number is required or as a comment (xxxx)

if a name is allowed. The post processor controls whether an

alphanumeric name is allowed in this field or if a number must

be entered. This is defined by the programNameIsInteger =

true; statement in the post processor and can be set to either true

(number required) or false (alphanumeric name allowed).

Program comment This field is output as a comment at the top of the NC file.

Unit Controls the output units of the NC file. This is usually set to

use the same units as the model, but can be overridden to output

in either Inch or Millimeters.

Reorder to minimize tool changes Check this box if you are running with multiple setups and you

want the operations with the same tool numbers to be placed

together to minimize tool changes. Operations within the same

setup will not be reordered.

Open NC file in editor Check this box if you want to open the output NC file in an

editor after post processing is finished. The editor used is

defined in the Preferences dialog in the General->Manufacture-

> External editor field.

Property Table Displays the properties defined in the post processor and allows

you to modify these properties. Please see the Property Table

section in this manual for a full description of post processor

properties.
Inventor/HSMWorks Post Process Dialog Fields

1.5.2 NC Programs

NC Programs are supported in Fusion 360 and allow you to group operations together and assign a post

processor that is used for these operations. You create an NC Program by pressing the NC Program

menu or right clicking on a (group of) operation(s) and selecting Create NC Program from the list.

Pressing the Post Process button will bring up the NC Program dialog where you can create an NC

Program from the selected operations when the Post or OK button are pressed. It is important to note

that pressing the OK button will NOT post process the NC Program but will only save it.

Introduction to Post Processors 1-12

 CAM Post Processor Guide 8/8/23

 NC Program Button Right Click to Create NC Program

The NC Program dialog contains two tabs, Settings and Operations. This is the same dialog that is

displayed when Post Processing from the menus.

You will also notice that when you post process against an NC Program that the NC Program dialog is

displayed. If you want to change any settings for post processing when using an NC Program, you must

edit the NC Program to make changes.

Selecting Operations for an NC Program

Introduction to Post Processors 1-13

 CAM Post Processor Guide 8/8/23

1.5.3 Machine Configurations

Machine Configurations can be used to define the kinematics and multi-axis capabilities of the machine

for both the post processor and machine simulation. A Machine Configuration is assigned to a Setup in

the CAM system. The usage of a Machine Configuration has distinct advantages.

1. Allows a single generic post processor to be used for multiple machines with different

kinematics.

2. The post processor is assigned directly to the Machine Configuration.

3. The NC output folder is defined in the Machine Configuration.

4. Defines the unique multi-axis features for the machine.

5. Required for Machine Simulation.

6. Required for Operation Properties.

You can determine if a post processor supports a Machine Configuration by checking for the

activateMachine function inside of the post processor. If this function is not present, then the post

processor will most likely not accept or fully support a Machine Configuration. There are a number of

post processors that support Machine Configurations, such as the Fanuc, Haas Next Generation,

Heidenhain, Hurco, Siemens, and Tormach posts.

You assign a Machine Configuration to a CAM Setup when creating or editing the Setup and pressing

the Select… button. This will bring up the Machine Library dialog that allows you to select a machine

from the available configurations.

Selecting a Machine Configuration

The Machine Library dialog consists of the following areas.

Introduction to Post Processors 1-14

 CAM Post Processor Guide 8/8/23

Area Item Description

Location of Machine

Configurations

 Specifies the area you want to select a Machine

Configuration from.

 Recent Displays recently selected Machine

Configurations.

 Document Displays Machine Configurations used in the

active model.

 My machines Displays Machine Configurations stored locally on

your computer or in selected (linked) folders. You

can add folders to the linked area by right clicking

on the Linked menu and selecting Link folder.

 Fusion 360 Library Displays all Machine Configurations included with

Fusion 360.

Machine Configurations Lists the Machine Configurations stored in the

selected location.

Filters and Machine

Configuration

Description

 The Filter tab allows you to filter the Machine

Configurations based on Capabilities, Machine

Simulation Ready, and Vendor. The Info tab

displays information about the selected Machine

Configuration.

Editing Menu Contains buttons for creating, editing, copying,

and deleting Machine Configurations. Right

clicking on a Machine Configuration will also

display this menu.

Creates a new Machine Configuration.

Edits an existing Machine Configuration. The

Machine Configuration must reside in one of the

My machines folders.

Copies the selected Machine Configuration.

Pastes the selected Machine Configuration into the

selected folder.

Imports an external Machine Configuration file.

Exports the selected Machine Configuration to an

external file.

Deletes the selected Machine Configuration.

Machine Library Dialog

Once you find the Machine Configuration you want to use you can copy it into your Local folder or a

Linked Folder. You can do this by dragging the configuration onto the desired My machines folder or

Introduction to Post Processors 1-15

 CAM Post Processor Guide 8/8/23

by copying and pasting it into the desired folder. You can only edit Machine Configurations stored in

one of the My machines folders.

The latest versions of Machine Configurations are available on our online Post Library. From here you

can search for the machine by the machine type, the manufacturer of the machine, or by machine name.

Online Machine Library

Once a Machine Configuration is selected, you can edit it by pressing the Edit... button in the Setup

dialog.

https://cam.autodesk.com/hsmposts

Introduction to Post Processors 1-16

 CAM Post Processor Guide 8/8/23

Editing/Creating a Machine Configuration

The areas of the Machine Configuration that are important for post processing are the Description,

Kinematics, Post Processing, and Multi-Axis settings. The information in the other areas can be

accessed by the post processor, but not all are used by the library post processors as of this writing.

Area Description

Description Describes the post processor, machine, manufacturer, and CNC control

of the configuration.

Kinematics Defines the machine kinematics of the moving axes. You can define up

to 3 linear axes, 2 rotary axes, and a single spindle. You can add/delete

an axis by right clicking on a component and selecting the appropriate

action. When you add an axis, it will be added after the component that

you clicked on.

The definition of the selected axis is displayed in the right pane of the

dialog, including the home position, rotation vector (orientation), range,

preference, and TCP setting. These fields apply directly to the

parameters of the createAxis function as described in the Multi-Axis

Post Processors chapter.

Post Processing This is where you will select the location of the post processor, the post

processor itself, and the output folder for the NC file. These will

become the defaults when post processing and for NC Programs.

Multi-Axis Defines the multi-axis capabilities of the control, along with how

retract/reconfigure operations are handled, and singularity settings.

These capabilities are described in the Multi-Axis Post Processors

chapter.
Machine Configuration Post Processor Settings

1.6 Creating/Modifying a Post Processor

Once you find a post processor that is close, but not exact to the requirements of your machine you will

need to make modifications to it. The good news is, all of posts are open source and can be modified

without limitation to create the post you need. You have a few options for making the modifications.

1. Make the modifications yourself using this manual as a guide and by asking for assistance from

the HSM community on the HSM Post Processor Forum.

2. Visit HSM Post Processor Ideas and create a request for a post processor for your machine.

Other users can vote for your request for Autodesk to create and add your post to our library.

3. Contact one of our CAM partners who offer post customization services. These partners can be

found on the HSM Post Processor Forum at the top of the page.

https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent

Introduction to Post Processors 1-17

 CAM Post Processor Guide 8/8/23

Finding HSM CAM Partners

No matter which method you decide to use to create your post processor, you should have enough

information available to define the requirements, which includes as much of the following as you can

gather.

1. A post processor (.cps) that will be used as the seed post.

2. Sample NC code that has run on your machine.

3. The machine/control make and model.

4. The type of machine (mill, lathe, mill/turn, waterjet, etc.).

5. The machine configuration, including linear axes, rotary axes setup, etc.

6. A programming manual for your machine/control.

1.7 Testing your Post Processor – Benchmark Parts

When testing your post processor, you will need a part with cutting operations to post against. We have

created standard benchmark parts for this specific purpose. These parts cover the most common

scenarios you will come across when testing a post processor and are available for HSMWorks, Inventor

CAM, and Fusion 360 CAM. They are available in both metric and inch format for all three CAM

systems. There are five different benchmark parts.

• Milling

• Turning and Mill/Turn

• Stock Transfers

• Waterjet-Laser-Plasma

• Probing

Introduction to Post Processors 1-18

 CAM Post Processor Guide 8/8/23

1.7.1 Locating the Benchmark Parts

The benchmark parts are available to all users of Autodesk CAM and can be accessed in the Samples

folder for each product.

HSMWorks Sample Parts

C:\Program Files\HSMWorks\examples

Inventor CAM Sample Parts

C:\Users\Public\Public Documents\Autodesk\Inventor CAM\Examples

Introduction to Post Processors 1-19

 CAM Post Processor Guide 8/8/23

Fusion 360 CAM

Select the Data Panel and Double Click on CAM Samples

Fusion 360 CAM (continued)

Double Click on Post Processor to Display the Sample Parts

1.7.2 Milling Benchmark Part

The milling benchmark parts include the following strategies.

• 2D

Introduction to Post Processors 1-20

 CAM Post Processor Guide 8/8/23

• Drilling

• Coolant codes

• Manual NC commands

• 3+2 5-axis

• 5-axis simultaneous

Mill Benchmark Part

1.7.3 Mill/Turn Benchmark Part

The mill/turn benchmark parts contain the following strategies.

• Primary and Secondary spindle operations

• Turning

• Axial milling

• Radial milling

• 5-axis milling

Introduction to Post Processors 1-21

 CAM Post Processor Guide 8/8/23

Turning and Mill/Turn Benchmark Part

1.7.4 Stock Transfer Benchmark Part

The stock transfer benchmark part contains the following strategies.

• Primary and Secondary spindle operations

• Simple part transfer

• Part transfer with cutoff

Stock Transfer Benchmark Part

Introduction to Post Processors 1-22

 CAM Post Processor Guide 8/8/23

The Waterjet-Laser-Plasma benchmark part contains the following strategies.

• Waterjet

• Laser

• Plasma

• Lead in/out

• Radius compensation

Waterjet-Laser-Plasma Benchmark Part

1.7.5 Probing Benchmark Part

The Probing benchmark part contains the following strategies.

• Various probing cycles

Autodesk Post Processor Editor 2-23

 CAM Post Processor Guide 8/8/23

Probing Benchmark Part

2 Autodesk Post Processor Editor
Since Fusion 360, Inventor CAM, and HSMWorks post processors are text-based JavaScript code, they

can be edited with any text editor that you are familiar with. There are various editors in the

marketplace that have been optimized for working with programming code such as JavaScript. We

recommend Visual Studio Code with the Autodesk Fusion 360 Post Processor Utility extension. Using

this editor provides the following benefits when working with Autodesk post processors.

• Color coding

• Automatic closing and matching of parenthesis and brackets

• Automatic indentation

• Intelligent code completion

• Automatic syntax checking

• Function List

• Run the post processor directly from editor

• Match the output NC file line to the post processor command that created it

2.1 Installing the Autodesk Post Processor Editor

Before you can use the VSC editor you will need to install it. The easiest way is to visit the Autodesk

Fusion 360 Post Processor Utility page in the Visual Studio Marketplace, where you can download VSC

and then the Autodesk Fusion 360 Post Processor Utility extension. Please note that the Visual Studio

Code site changes quite frequently, so the directions/pictures in this section might not be exactly what

you see on the screen, but the installation steps should still be similar.

https://marketplace.visualstudio.com/items?itemName=Autodesk.hsm-post-processor
https://marketplace.visualstudio.com/items?itemName=Autodesk.hsm-post-processor

Autodesk Post Processor Editor 2-24

 CAM Post Processor Guide 8/8/23

Installing Visual Studio Code

This link will take you to the Visual Studio Code installation page. Select the correct version for your

operating system.

Installing the Windows Version of Visual Studio Code

This will download an installation program that you can run to do the actual install. Left click on the

installation program to execute it.

Click the Executable to Install VSC

Autodesk Post Processor Editor 2-25

 CAM Post Processor Guide 8/8/23

Follow the instructions displayed on the screen to finish the installation. You should select the defaults

for all questions, though you may want to make this the default code editor and add it to the Windows

Explorer file context menu.

Selecting Installation Options

You can choose to startup the Visual Studio Code editor automatically after it is installed. Once the

editor is opened you can install the Autodesk Fusion 360 Post Processor Utility by opening the

Extensions view in the left pane and searching for Autodesk. Select the Autodesk Fusion 360 Post

Processor Utility to install it.

Autodesk Post Processor Editor 2-26

 CAM Post Processor Guide 8/8/23

Downloading the Autodesk Fusion 360 Post Processor Extension

Installing the Autodesk Fusion 360 Post Processor Extension

After installing the Autodesk Fusion 360 Post Processor Utility extension you will want to exit the VSC

editor and then restart it so that the extension is initialized. You are now ready to start editing Autodesk

post processors.

2.2 Autodesk Post Processor Settings

After installing the Autodesk Post Processor editor you will want to setup the editor to match your

preferences. Open the settings file by selecting File->Preferences->Settings. This section will describe

some of the most popular settings, but feel free to explore other settings at your leisure to find any that

you may want to change. The User Settings can also be displayed by using the Ctrl+Comma shortcut.

Autodesk Post Processor Editor 2-27

 CAM Post Processor Guide 8/8/23

Displaying the Editor Settings

The settings will be displayed in a separate tab. You can now search for individual settings using the

Search bar. To display the Autodesk Fusion 360 Post Processor Utility settings type in hsm in the search

bar.

Modifying the Editor Settings

There is a description that explains the setting making it easy for you to make the changes.

The following table provides a list of some of the more common settings and their descriptions.

Autodesk Post Processor Editor 2-28

 CAM Post Processor Guide 8/8/23

Setting Description

Editor > Minimap Controls if the minimap is shown. The

minimap is a small representation of the entire

file displayed on the right side of the window

and allows you to easily scroll through the file.

Editor: Font Size Size of the editor font.

Editor: Font Weight Weight (thickness) of the editor font.

Editor: Detect Indentation Automatically detects the editor.tabSize and

editor.insertSpaces settings when opening a

file.

Editor: Insert Spaces When checked, spaces will be inserted into the

file when the tab key is pressed.

Editor: Tab Size Sets the number of spaces a tab is equal to. The

standard setting for Autodesk post processors is

2.

Editor > Parameter Hints Enables a pop-up that shows parameter

documentation and style information as you

type.

Editor: Auto Closing Brackets Controls if the editor should automatically close

brackets after opening them.

Extensions: Auto Check Update or Auto Updates Automatically (check for) update extensions.

Files: Associations Associates file types with a programming

language. This must have "*.cps": "javascript"

set in it to enable the automatic features of the

editor in Autodesk post processors.

Workbench: Color Theme Defines the color theme for the editor. This

setting can be changed using the File-

>Preferences->Color theme menu.

HSMPost Utility: Auto Update Function List Updates the function list automatically, without

the need for refreshing.

HSMPost Utility: Sort Function List Alphabetically When checked the function list will be sorted.

Unchecked will display the function names in

the order that they are defined.

HSMPost Utility: Color Output When checked, rapid, feedrate, and circular

blocks will be displayed in color.

HSMPost Utility: Rapid Color Color for rapid move blocks.

HSMPost Utility: Linear Color Color for feedrate move blocks.

HSMPost Utility: Circular Color Color for circular move blocks.

HSMPost Utility: Enable Auto Line Selection Enables the automatic selection of the line in

the post processor that generated the selected

line in the output NC file.

HSMPost Utility: Output Units Sets the desired output units when post

processing

HSMPost Utility: Shorten Output Code Limits the number of blocks output when

posting, making it easier to navigate.

Autodesk Post Processor Editor 2-29

 CAM Post Processor Guide 8/8/23

Setting Description

HSMPost Utility: Post On CNCSelection When checked, post processing will occur as

soon as a CNC file is selected.

HSMPost Utility: Post On Save Automatically run the post processor when it is

saved, only if the NC output file window is

open.
Commonly Changed User Settings

2.3 Left Side Flyout

On the left side of the editor window is a tab that will open different flyout dialogs. The features

contained in the flyout dialogs are quite beneficial while editing a post processor and are explained in

this section. The Source Control flyout is not used when editing post processors and will not be

discussed.

Left Side Flyout Dialog

2.3.1 Explorer Flyout

The Explorer flyout contains expandable lists that are used to display the open editors, folders, variables,

functions, and CNC selector. The arrow ► at the left of each entry is used to expand or collapse the list.

List Description

OPEN EDITORS Lists the files that are open in this instance of the

VSC editor. Any files that have been changed,

but not been saved will be marked with a bullet

(•). The number of changed files that have not

been saved is displayed in the Explorer icon.

Autodesk Post Processor Editor 2-30

 CAM Post Processor Guide 8/8/23

List Description

NO FOLDERS OPEN You can open a folder for quick access to all of

the post processors in the folder. Expanding the

folders will display the Open Folder button that

can be used to open a folder. Clicking on a file in

the open folder will automatically open it in the

editor. Take note that if a folder is opened, then

all opened files in the editor will first be closed

and you will be prompted to save any that have

been changed.

OUTLINE Lists the functions defined in the post processor

and the variables defined in each function.

Expanding the function by pressing the arrow ►

to the left of the function name will display the

variables defined in the function. You can select

any of the variables to go to the line where it is

defined.

CNC SELECTOR Contains the Autodesk intermediate files (*.cnc)

that are available to the post processor from the

VSC editor. This list is further explained in the

Running/Debugging the Post section of this

chapter.

FUNCTION LIST Expanding the function list will display the

functions defined in the active post processor.

The functions will either be listed in alphabetical

order or by the order they appear in the post

processor depending on the HSMPost Utility:

Sort Function List Alphabetically setting. You

can select on a function in this list and the cursor

will be placed at the beginning of this function in

the editor window and while traversing through

the post processor the function that the cursor is

in will be marked with an arrow ►, making it

easy for you to determine what function the

active line is in.

POST PROPERTIES Contains the Property Table for the post

processor, similar to the Property Table displayed

when running the post from CAM. This list is

further explained in the Running/Debugging the

Post section of this chapter.

VARIABLE LIST Lists the variable types supported by the post

processor, such as Array, Format, Vector, etc. It

does not contain a list of variables defined in the

post processor. Expanding the variable type by

Autodesk Post Processor Editor 2-31

 CAM Post Processor Guide 8/8/23

List Description

pressing the arrow ►to the left of it will display

the functions associated with the variable type.
Explore Flyout Selections

 Open Editors Opening a Folder Open Folder File List

 Outline CNC Selector Function List

 Post Properties Variable List

2.3.2 Search Flyout

You can search for a text string in the current file or in all of the opened files. To search for the text

string in the current file you should use the Find popup window accessed by pressing the Ctrl+F keys.

Autodesk Post Processor Editor 2-32

 CAM Post Processor Guide 8/8/23

Ctrl+F Find Popup – Search for a Text String in the Current File

As you type in a text string the editor will automatically display and highlight the next occurrence of the

text in the file. The number of occurrences of the text string in the file will be displayed to the right of

the text field. You can use the Enter key to search for the next occurrence of the string or press the

arrow keys to search forwards → and backwards ← through the file. If you use the Enter key, then the

keyboard focus must be in the Find field.

Using the Find Popup to Search for Text Strings

The Search flyout searches for a file in the opened files and in the files located in an open folder (refer

to the Explorer flyout to see how to open a folder). The Search dialog will be displayed when you press

the Search button.

Search Flyout – Search for a Text String in Multiple Files

Entering a text string to search for and then pressing the Enter key will display the files that contain the

text string and the number of instances of the text string in each file. You can expand the file in the list

by pressing the arrow key ► and each instance of the text string found in the selected file will be

displayed. Clicking on one of the instances causes the editor to go to that line in the file and

automatically open the file if it is not already opened. If you don't make any changes to the file and then

select the text string in another file, then the first file will be closed before opening the next file. An

unchanged file opened from the Search flyout will have its name italicized in the editor window.

Autodesk Post Processor Editor 2-33

 CAM Post Processor Guide 8/8/23

Searching for a Text String in the Opened Files

There are options that are available when searching for text strings. These options are controlled using

the icons in the Search dialog and Find popup.

Icon Description

When enabled, the case of the search string must be the same as the matching text

string in the file.

 When enabled, the entire word of the matching text string in the file must be the

same as search string. When disabled, it will search for the occurrence of the search

string within words.

 When enabled, the '.' character can be used as a single character wildcard and the '*'

character can be used as a multi-character wildcard in the search string.

 Search forward in the file. In the Find popup only.

 Search backward in the file. In the Find popup only.

 Searches for the text string only in the selected text in the file. In the Find popup

window only.

 Closes the Find popup window.

 Refresh the results window. In the Search flyout only.

Collapse all expanded files in the results window. In the Search flyout only.

 Displays fields that allow you to include or exclude certain files from searches. In

the Search flyout only.

Displays the Replace field, allowing you to replace the Search text with the Replace

field text.

Replaces the current (highlighted) occurrence of the Search text with the Replace

field text. Hitting the Enter key while in the Replace field performs the same

replacement. In the Find popup window only.

Replaces all occurrences of the Search text with the Replace field text. When

initiated from the Search flyout, all occurrences of the text in all files listed in the

Results window will be replaced.
Search and Replace Options

Autodesk Post Processor Editor 2-34

 CAM Post Processor Guide 8/8/23

2.3.3 Bookmarks Flyout

Okay, so the Bookmarks flyout is actually a Breakpoints flyout, but since JavaScript does not have an

interactive debugger we are going to use it for adding bookmarks to the opened files. Placing the cursor

to the left of the line number where you want to set a bookmark will display a red circle and then

clicking at this position will add the bookmark.

To see the active bookmarks you can open the Bookmarks flyout and expand the BreakPoints window.

You can then go directly to a line that is bookmarked by selecting that line in the Bookmarks flyout.

Bookmarks set in all opened files will be displayed in the flyout and the file that the bookmark is set in

will automatically be made the active window when the bookmark is selected.

Using the Bookmarks Flyout

2.3.4 Extensions Flyout

Visual Studio Code is an open source editor and there are many extensions that have been added to it by

the community. For example, the Autodesk Fustion 360 Post Processor Utility is an extension to this

editor. By opening the Extensions flyout you can see what extensions you have installed and what

extensions have updates waiting for them.

Autodesk Post Processor Editor 2-35

 CAM Post Processor Guide 8/8/23

Viewing Installed Extensions

If there is an Update to x.x.x button displayed with the extension you can press this button to install the

latest version of the associated extension.

You can search the Visual Studio Marketplace for extensions that are beneficial for your editing style by

typing in a name in the Search Extensions in Marketplace field. For example, if you want a more

dedicated way to set bookmarks you can type in bookmark in this field and all extensions dealing with

adding bookmarks will be displayed. You can press the green Install button to install the extension.

You can also search for extensions online at the Visual Studio Marketplace.

Viewing Extensions in the Online Marketplace

2.4 Autodesk Post Processor Editor Features

The Autodesk Post Processor editor has features to enhance the ease of editing of post processor

JavaScript files. One example is the color coding of the text, variables are in one color, functions in

another, JavaScript reserved words in yet another, and so on. The colors of each entity is based on the

Workbench Color Theme setting.

https://marketplace.visualstudio.com/

Autodesk Post Processor Editor 2-36

 CAM Post Processor Guide 8/8/23

This section will go over some of the more commonly used features. You are sure to discover other

features as you use the editor.

2.4.1 Auto Completion

As you type the name of a variable or function you will notice a popup window that will show you

previously used names that match the text as it is typed in. Selecting one of the suggestions by using the

arrow keys to highlight the name and then the tab key to select it will insert that name into the spot

where you are typing.

If the Editor: Parameter Hints setting is set to true, then when you type in the name of a function,

including the opening parenthesis, you will be supplied the names of the function's arguments for

reference.

Using Auto Completion

2.4.2 Syntax Checking

If you have a syntax error while editing a file, the editor is smart enough to flag the error by

incrementing the error count at the bottom left of the window footer and marking the problem in the file

with a red squiggly line. You can open the Problems window by selecting the X in the window footer to

see all lines that have a syntax error. Clicking on the line displaying the error will then take you directly

to that line, so that you can resolve the error.

You can close the window by pressing on the X in the window footer or the X at the top right of the

Problems window.

Autodesk Post Processor Editor 2-37

 CAM Post Processor Guide 8/8/23

Displaying Syntax Errors

2.4.3 Hiding Sections of Code

You can hide code that is enclosed in braces {} by positioning the cursor to the right of the line number

on the line with the opening brace and then pressing the [-] icon. The code can be expanded again by

pressing the [+] icon. Note that the icons will not be displayed unless the cursor is placed in the area

between the line number and the editing window.

Hiding Sections of Code

2.4.4 Matching Brackets

If you place the edit cursor at a parenthesis (()), bracket ([]), or brace ({}) the editor will highlight the

selected enclosure as well as the opening/closing matching enclosure character. If there are multiple

enclosure characters right next to each other, then the enclosure following the edit cursor will be

selected. If the enclosure character does not highlight, then this means that there is not a matching

opening/closing enclosure.

Autodesk Post Processor Editor 2-38

 CAM Post Processor Guide 8/8/23

Matching Parenthesis

2.4.5 Go to Line Number

You can go to a specific line number in the file by pressing the Ctrl+G keys and then typing in the line

number.

Go to Line Number

2.4.6 Opening a File in a Separate Window

You can open a file in the current window by selecting the File->Open File… menu from the task bar or

by pressing the Ctrl+O keys. You can open the active file in a separate VSC window by pressing the

Ctrl+K keys and then pressing the O key. The file will be opened in the a new window and remain open

in the active window. You can also open a new VSC window by selecting the File->New Window menu

or by pressing the Ctrl+Shift+N keys.

Open Separate VSC Window

2.4.7 Shortcut Keys

You can display the assigned Shortcut Keys by pressing the F1 key and then typing in key to display all

commands referencing the key string. Select the Preferences: Open Keyboard Shortcuts menu. You

can also press the Ctrl+K Ctrl+S keys in sequence to display the Shortcut Keys window.

Autodesk Post Processor Editor 2-39

 CAM Post Processor Guide 8/8/23

Display the Shortcut Keys

Shortcut Key Assignments

Modifications and/or additions to the Shortcut Key assignments can be made by selecting the

keybindings.json link at the top of the page. This will open a split window display that displays the

default Shortcut Keys in the left window and the user defined Shortcut Keys in the right window. Use

the same procedure as modifying a setting to modify a Shortcut Key, by copying the binding definition

from the left window into the right window and making the desired changes. Be sure to save the

keybindings.json file after making your changes.

The format of the keystrokes that represent a single Shortcut is defined in the following table.

Shortcut Sample Description

key F1 Press the single key.

key+key Ctrl+Shift+Enter key is the name of the key to press. The + character means that

the keys must be pressed at the same time. The + key is not

pressed.

key key Ctrl+K Ctrl+S The keys should be pressed in sequence, one after the other.

Each key can be a combination of multiple keys that are pressed

at the same time as explained above. Unless Shift is part of the

key sequence, then lower case letters are being specified.
Shorcut Key Syntax

Autodesk Post Processor Editor 2-40

 CAM Post Processor Guide 8/8/23

2.4.8 Running Commands

The commands accessible by shortcut keys or the menus can be found and run from the command popup

dialog and are accessed in the editor by pressing the F1 key. Once the command popup is displayed you

can search for commands by typing in text in the search line. The commands that match the search will

be displayed along with the Shortcut Keys that are assigned to the commands. Select on the command to

run it.

Running a Command

2.5 Running/Debugging the Post

The Autodesk Fusion 360 Post Processor Utility extension allows you to run the post processor that you

are editing directly from the editor and to debug the post by matching the output lines in the NC file with

the code line that generated the output. You can run the post against the provided intermediate files

generated from the Benchmark Parts or you can create your own intermediate file to run the post against.

2.5.1 Autodesk Post Processor Commands

There are built-in commands that pertain to running the post processor. These commands are accessed

by pressing the F1 key and typing HSM in the search field.

Displaying the Autodesk Post Processor Commands

The following table describes the available commands.

Autodesk Post Processor Editor 2-41

 CAM Post Processor Guide 8/8/23

Command Description

Post Utility Displays a menu where you can post process the

selected intermediate (CNC) file against the open

post processor, select a new CNC file, or display

the Autodesk Post Help window. You can also

use the shortcut Ctrl+Alt+G to run the post

processor.

Change post executable Sets the location of the post processor engine

executable.

Show debugged code Displays the entry functions that are called and

the line numbers that generated the block in the

output NC file. This is the same output that is

displayed when you call the setWriteStack(true)

and setWriteInvocations(true) functions.

Delete CNC file This command cannot be run from the

Commands menu. Right clicking on a CNC file

in the CNC Selection list and selecting Delete

CNC File will delete the file and remove it from

the list.

Disable auto line selection Disables the feature of automatically displaying

the line in the post processor that generated the

selected line in the NC output file.

Download CNC exporting post processor Downloads the Exporting Post Processor used

for generating your own CNC files for testing.

Post help Displays the online AutoDesk CAM Post

Processor Documentation web page.
The Autodesk Post Processor Commands

2.5.2 The Post Processor Properties

You can display the properties associated with the open post processor by opening the Explorer flyout

and expanding the Post Properties list. Clicking on a property will prompt you to change the property.

The symbol will be displayed next to the property if it has been changed from the default value.

If you add a new property to the post or for some reason the properties don’t display, you can press the

yellow refresh symbol in the Post Properties header to refresh the displayed properties.

Autodesk Post Processor Editor 2-42

 CAM Post Processor Guide 8/8/23

Modifying the Post Properties

2.5.3 Running the Post Processor

To run the post processor that is open in the editor you can use the Ctrl+Alt+G shortcut or run the Post

Utility from the Command window as described in the previous section. First you will need to select the

intermediate CNC file to run the post against. You select the CNC file by opening the Explorer flyout

and expanding the CNC Selector list until you find the desired CNC file.

Post the Selected CNC File Against the Active Post

You can also select the CNC file from the Post Utility menu.

Select the CNC File or Post Processor Using the Post Utility Command

Autodesk Post Processor Editor 2-43

 CAM Post Processor Guide 8/8/23

If running a post processor for the first time in the editor it is possible that the location of the post engine

executable (post.exe) is not known. In this case you will see the following message displayed.

You can press the Browse… button to search for post.exe. The executable will be in one of the

following locations depending on the version of HSM being run.

HSM Version Post Executable Location

Fusion 360 C:\User\username\AppData\Local\Autodesk\webdeploy\production\(id)\Applications\CAM360

username is your username that you logged in as. (id) is a unique and long name that changes

depending on the version of Fusion 360 that you have installed. You will usually select the folder

with the latest date.

Inventor C:\Program Files\Autodesk\Inventor CAM yyyy

yyyy is the version number (year) of Inventor.

HSMWorks C:\Program Files\HSMWorks

Post Executable Locations

Once you have posted against the CNC file, the output NC file or Log file will be displayed in the right

panel of the split screen. When the HSMPostUtility: Enable Auto Line Selection setting is true, then

clicking twice on a line in the output NC file will highlight the line in the post processor that generated

the output. The second click must be on a different character on the same output line to highlight the

line. Then, by clicking on a different character in the same line you will be walked through the stack of

functions that were called in the generation of the output.

Autodesk Post Processor Editor 2-44

 CAM Post Processor Guide 8/8/23

Output NC File, Click Twice on Output Line to See Code that Generated Output

2.5.4 Creating Your Own CNC Intermediate Files

The Autodesk Post Processor extension comes with built-in CNC intermediate files that are generated

using the HSM Benchmark Parts. These can be used for testing most aspects of the post processor, but

there are times when you will need to test specific scenarios. For these cases you can create your own

CNC file to use as input.

First you will need to download the export cnc file to vs code.cps post processor. You can do this by

running the Download CNC exporting post processor command.

Download the CNC Exporting Post Processor

A file browser will come up that allows you to select the folder where you want to download the post.

Follow the directions in the Downloading and Installing a Post Processor section for installing a post

processor on your system.

Once the post processor is installed you will want to post process the operations you want to use for

testing. The CNC exporting post processor is run just like any other Autodesk post processor, except it

will not generate NC code, but will rather create a copy of the CNC file from the Autodesk CAM system

in the Custom location of the CNC Selector folder. Most posts use a number for the output file name, it

is recommended that you give the CNC file a unique name that describes the operations that were used

to generate it.

Create a Custom CNC Intermediate File

Once you click the yellow refresh button you should see the CNC file in the Custom branch of the CNC

Selector list and can use it when post processing from the VSC editor. If you decide that you no longer

JavaScript Overview 3-45

 CAM Post Processor Guide 8/8/23

need a custom CNC intermediate file you can delete it by right clicking on the CNC file and select

Delete CNC File.

 Using a Custom CNC Intermediate File Deleting a Custom CNC Intermediate File

3 JavaScript Overview

3.1 Overview

Autodesk post processors are written using the JavaScript language. It resembles the C, C++, and Java

programming languages, is interpreted rather than being a compiled language, and is object-orientated.

JavaScript as it is used for developing post processors is fairly simple to learn and understand, but still

retains its complex nature for more advanced programmers.

This chapter covers the basics of the JavaScript language and conventions used by Autodesk post

processors. There are many web sites that document the JavaScript language. The ELOQUENT

JAVASCRIPT site has a nicely laid out format. If you prefer a hard copy JavaScript guide, then the

JavaScript the Definitive Guide, Author: David Flanagan, Publisher: O’Reilly is recommended.

Whichever manual you use, you will want to focus on the core syntax of JavaScript and ignore the

browser and client-side aspects of the language.

The Autodesk post processor documentation is provided as the post.chm file with HSMWorks and

Inventor CAM or you can visit the Autodesk CAM Post Processor Documentation web site. You will

find that the post.chm version of the documentation is easier to view, since it has a working Index.

3.2 JavaScript Syntax

JavaScript is a case sensitive language, meaning that all functions, variables, and any other identifiers

must always be typed exactly the same with regards to lower and uppercase letters.

currentCoolant = 7;

currentCoolant = 8;

currentcoolant = 9;
Case Sensitive Definition of 3 Different Variables

http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://cam.autodesk.com/posts/reference/index.html

JavaScript Overview 3-46

 CAM Post Processor Guide 8/8/23

JavaScript ignores spaces and new lines between variables, operators, names, and delimiting characters.

Variable and function names cannot have spaces in them, as this would create separate entities.

Commands can be continued onto multiple lines and are terminated with a semicolon (;) to mark the end

of the logical command. If you are defining a string literal within quotes, then the literal should be

defined on a single line and not on multiple lines. If a text string is too long for a single line, then it

should be concatenated using an operation.

 message = "The 3 inch bore needs to be probed prior to starting " +

 "the next operation.";
Breaking Up a Text String onto Multiple Lines

There are two methods of defining comments in JavaScript. You can either enclose comments between

the /* and */ characters, which will treat all text between these delimiters as a comment, or place the //

characters prior to the comment text.

The /* comment */ format is typically used as the descriptive header of a function or to block out

multiple lines of code. Any characters on the line that follow the // characters are treated as a comment,

so you can have a single comment line or add a comment to the end of a JavaScript statement.

/**

 Output a comment.

*/

function writeComment(text) {

 writeln(formatComment(text)); // write out comment line

}

..

/*

 switch (unit) {

 case IN:

 writeBlock(gUnitModal.format(20));

 break;

 case MM:

 writeBlock(gUnitModal.format(21));

 break;

 }

*/
Comment Lines

Using indentation for function contents, if blocks, loops and continuation lines is recommended as this

makes it easier to visualize the code. Tab characters, though supported by JavaScript, are discouraged

from being used. It is preferred to use virtual tab stops of two spaces for indenting code in post

processor code. Most editors, including the Autodesk Post Processor Editor can be setup to

automatically convert tab characters to spaces that will align each indent at two spaces. Please refer to

the Post Processor Editor chapter for an explanation on how to setup the Autodesk recommended editor.

JavaScript Overview 3-47

 CAM Post Processor Guide 8/8/23

function test (input) {

 // indent 2 spaces inside of function

 if (input == 1) {

 writeBlock(// indent 2 more spaces in if block or loop

 gAbsIncModal.format(90), // indent 2 more spaces for continuation lines

 gMotionModal.format(0)

);

 }

}
Indent Code 2 Spaces Inside Function, If Block, Loop, and Continuation Line

3.3 Variables

Variables are simply names associated with a value. The value can be a number, string, boolean, array,

or object. Variables in JavaScript are untyped, meaning that they are defined by the value that they have

assigned to them and the value type can change throughout the program. For example, you can assign a

number to a variable and later in the program you can assign the same variable a string value. The var

keyword is used to define a variable.

If a variable is not assigned a value, then it will be assigned the special value of undefined.

var a; // define variable 'a', it will have the value of undefined

var b = 1; // assign a value of 1 to the variable 'b'

var c = "text"; // assign a text string to the variable 'c'

c = 2.5; // 'c' now contains a number instead of string
Variable Definitions

While you can include multiple variable declarations on the same var line, this is against the standard

used for post processors and is not recommended. You can also implicitly create a variable simply by

assigning a value to the variable name without using the var keyword, but is also not recommended.

When declaring a new variable, be sure to not use the same name as a JavaScript or Post Kernel

keyword, for example do not name it var, for, cycle, currentSection, etc. Refer to the appropriate

documentation for a list of keywords/variables allocated in JavaScript or the Post Kernel.

JavaScript supports both global variables and local variables. A global variable is defined outside the

scope of a function, for example at the top of the file prior to defining any functions. Global variables

are accessible to all functions within the program and will have the same value from function to

function. Local variables are only accessible from within the function that they are defined. You can

use the same name for local variables in multiple functions and they will each have their own unique

value in the separate functions. Unlike the C and C++ languages, local variables defined within an if

block or loop are accessible to the entire function and are not local to the block that they are defined in.

JavaScript Overview 3-48

 CAM Post Processor Guide 8/8/23

3.3.1 Numbers

Besides containing a standard numeric value, a variable assigned to a number creates a Number object.

For this discussion, we will consider an object a variable with associated functions. These functions are

specific to numbers and are listed in the following table.

Function Description Returns

toExponential(digits) Format a number using exponential

notation

String representation of number

toFixed(digits) Format a number with a fixed number

of digits

String representation of number

toLocaleString() Format a number according to locale
conventions

String representation of number

toPrecision(digits) Format a number using either a fixed

number of digits or using exponential

notation depending on value of

number

String representation of number

toString() Format a number String representation of number

Number Object Functions

var a = 12.12345;

b = a.toExponential(2); // b = "1.21e+1"

b = a.toFixed(3); // b = "12.123"

b = a.toString(); // b = "12.12345"
Sample Number Output

The JavaScript built-in Math object contains functions and constants that apply to numbers. The

following table lists the Math functions and constants that are most likely to be used in a post processor.

All Math functions return a value.

Function Return value

Math.abs(x) Absolute value of x

Math.acos(x) Arc cosine of x in radians

Math.asin(x) Arc sine of x in radians

Math.atan(x) Arc tangent of x in radians

Math.atan2(y, x) Counterclockwise angle between the positive X-axis and the point x,y in radians

Math.ceil(x) Rounds up x to the next integer

Math.cos(x) Cosine of x

Math.floor(x) Rounds down x to the next integer

Math.max(args) The maximum value of the input arguments

Math.min(args) The minimum value of the input arguments

Math.PI The value of PI, approximately 3.14159

Math.pow(x, y) x raised to the power of y

Math.round(x) Rounds x to the nearest integer

Math.sin(x) Sine of x

Math.sqrt(x) Square root of x

Math.tan(x) Tangent of x

JavaScript Overview 3-49

 CAM Post Processor Guide 8/8/23

Function Return value

Math.NaN The value corresponding to the not-a-number property

Math Object

a = Math.sqrt(4); // a = 2

a = Math.round(4.59); // a = 5

a = Math.floor(4.59); // a = 4

a = Math.PI; // a = 3.14159

a = Math.cos(toRad(45)); // a = .7071

a = toDeg(Math.acos(.866)); // a = 60
Sample Math Object Output

The Math trigonometric functions all work in radians. As a matter of fact, most functions that pass

angles in the post processor work in radians. There are kernel supplied functions that are available for

converting between radians and degrees. toDeg(x) returns the degree equivalent of the radian value x

and conversely the toRad(x) function returns the radian equivalent of the degree value x.

There are also standalone numeric functions that are not part of the Number of Math objects. These are

listed in the following table.

Function Return value

parseFloat(value) Parses value as a string argument and returns a real number.

Returns NaN if the string does not represent a valid number.

parseInt(value, radix) Parses value as a string argument and returns an integer of the

specified radix. radix is typically defined as 10, but can be 2, 8,

16, etc. Returns NaN if the string does not represent a valid

integer.

spatial(value, unit) Returns value converted to MM. unit specifies the units that value

is defined in and can be either MM or IN. The unit conversion

scale used is 25mm to 1in and not 25.4. This conversion creates a

more acceptable scaled value for display, for example 4in scales to

100mm instead of 101.6mm. The spatial function is typically used

to define the Built-in properties at the top of the post processor,

since they are referenced as MM in the post engine.

toPreciseUnit(value, unit) Returns value converted to the output units. unit specifies the units

that value is defined in and can be either MM or IN A scale factor

of 25.4mm to 1in is used.

toUnit(value, unit) Returns value converted to the output units. unit specifies the units

that value is defined in and can be either MM or IN. The unit

conversion scale used is 25mm to 1in and not 25.4.
Other Numeric Functions

3.3.2 Strings

Variables assigned a text string will create a String object, which contain a full complement of functions

that can be used to manipulate the string. These functions are specific to strings and are listed in the

JavaScript Overview 3-50

 CAM Post Processor Guide 8/8/23

following table. The table details the basic usage of these functions as you would use them in a post

processor. Some of the functions accept a RegExp object which is not covered in this manual, please

refer to dedicated JavaScript manual for a description of this object.

Function Description Returns

charAt(n) Returns a single character at position n The nth character

indexOf(substring, start) Finds the substring within the string.

start is optional and specifies the

starting location within the string to

start the search at.

The location of the first occurrence of

substring within the string.

lastIndexOf(substring, start) Finds the last occurrence of substring

within the string. start is optional and

specifies the starting location within

the string to start the search at.

The location of the last occurrence of

substring within the string.

length Returns the length of the string.

length is not a function, but rather a
property of a string and does not use ()

in its syntax.

The length of the string

localeCompare(target) Compares the string with target string. A negative number if string is less

than target, 0 if the strings are

identical, and a positive number if

string is greater than target

replace(pattern, replacement) Replaces the pattern text within the

string with the replacement text.

The updated string.

slice(start, end) Creates a substring from the string

consisting of the start character up to,

but not including the end character of

the string.

A substring containing the text from

string starting at start and ending at

end-1. A negative value for start or

end specifies a position from the end

of the string; -1 is the last character, -2

is the second to last character, etc.

split(delimiter, limit) Splits a string at each occurrence of

the delimiter string.

An array of strings created by splitting

string into substrings at the delimiter.

A maximum of limit substrings will be

created.

toLocaleLowerCase() Converts the string to all lowercase

letters in a locale-specific method.

Lowercase string.

toLocaleUpperCase() Converts the string to all uppercase

letters in a locale-specific method.

Uppercase string.

toLowerCase() Converts the string to all lowercase

letters.

Lowercase string.

toUpperCase() Converts the string to all uppercase

letters.

Uppercase string.

String Object Functions

var a = "First, Second, Third";

b = a.charAt(3); // b = "s"

b = a.indexOf("Second"); // b = 7

b = a.length; // b = 20

b = a.localeCompare("ABC"); // b = 5;

b = a.replace(/,/g, "-"); // b = "First- Second- Third"

b = a.slice(0, -7); // b = "First, Second"

JavaScript Overview 3-51

 CAM Post Processor Guide 8/8/23

b = a.split(","); // b[0] = "First", b[1] = "Second", b[2] = "Third";

b = a.toLowerCase() ; // b = "first, second, third"

b = a.toUpperCase(); // b = "FIRST, SECOND, THIRD"
Sample String Output

3.3.3 Booleans

Booleans are the simplest of the variable types. They contain a value of either true of false, which are

JavaScript keywords.

var a = true; // 'a' is defined as a boolean

if (a) {

 // processes the code in this if block since 'a' is 'true'

}
Sample Boolean Assignment

3.3.4 Arrays

An array is a composite data type that stores values in consecutive order. Each value stored in the array

is considered an element of the array and the position within an array is called an index. Each element

of an array can be any variable type and each element can have a different variable type than the other

elements in the array.

An array, like numbers and strings, are considered an object with functions associated with it. You can

define an array using two different methods, as an empty array using a new Array object, or by creating

an array literal with defined values for the array. You can specify the initial size of the array when

defining an Array object. The initial size of an array defined with values is the number of values

contained in the initialization.

var a = new Array(); // creates a blank array, all values are assigned undefined

var a = new Array(10); // creates a blank array with 10 elements

var a = [true, "a", 3.17]; // creates an array with the first 3 elements assigned

var a = [{x:1, y:2}, {x:3, y:4}, {x:5, y:6}]; // creates an array of 3 xy objects
Array Definitions

You can access an array element by using the [] brackets. The name of the array will appear to the left

of the brackets and the index to the element within the array inside of the brackets. The index can be a

simple number or an equation.

var a = [1, 2, "text", false];

b = a[0]; // b = 1

a[5] = "next"; // a = [1, 2, "text", false, "next"]

b = a[2+a[0]]; // b = false;
Accessing Elements Within an Array

JavaScript Overview 3-52

 CAM Post Processor Guide 8/8/23

The Array object has the following functions associated with it.

Function Description Returns

concat(values) Appends the values to an array. Original array with concatenated

elements

join(separator) Combines all elements of an array into

a string. separator is optional and

specifies the string used to separate the

elements of the array. The default is a

comma.

String containing array elements.

length Returns the allocated size of the array.

length is not a function, but rather a

property of an array and does not use

() in its syntax.

The size of the array.

pop() Pops the last element from the array

and decreases the size of the array by

1.

The value of the last element of the

array.

push(values) Pushes the values onto the array and

increases the size of the array by the

number of values.

Updated size of array.

reverse() Reverses the order of the elements of

the array.

Returns nothing, but rather modifies

the original array.

shift(values) Removes the first element from the

array and decreases the size of the

array by 1.

The value of the first element of the

array.

slice(start, end) Creates a new array consisting of the

start element up to, but not including

the end element of the array.

An array containing the elements from

array starting at start and ending at

end-1. A negative value for start or

end specifies a position from the end

of the array; -1 is the last element, -2

is the second to last element, etc.

sort(function) Sorts the elements of the array. The

original array will be modified. The

sort method uses an alphabetical order

of elements converted to strings by

default. You can specify a function

that overrides the default sorting

algorithm.

The sorted array.

toLocaleString() Format an array according to locale

conventions

String representation of array

toString Format an array String representation of array

unshift() Adds the values to the beginning of an

array and increases the size of the

array by the number of values.

Updated size of array.

Array Object Functions

var a = [1, 2, 3, 4, 5, 6, 7, 8];

b = a.concat(9, 10, 11); // b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

b = a.join(", "); // b = "1, 2, 3, 4, 5, 6, 7, 8"

b = a.length; // b = 8

a.push(9, 10, 11) // a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

b = a.pop(); // a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], b = 10

JavaScript Overview 3-53

 CAM Post Processor Guide 8/8/23

a.reverse(); // a = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

b = a.unshift(12, 11); // a = [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1], b = 12

b = a.shift(); // a = [11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1], b = 12

b = a.slice(4, 7); // b = [7, 6, 5]

a.sort(function(a, b) { // a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

 return a-b;

 });

b = a.toString() // b = "1,2,3,4,5,6,7,8,9,10,11"
Sample Array Output

3.3.5 Objects

An Object is similar to an array in that it stores multiple values within a single variable. The difference

is that objects use a name for each sub-entity rather than relying on an index pointer into an array. The

properties table in a post processor is an object. You can define an object using two different methods,

explicitly using the Object keyword, or implicitly by creating an object literal with defined names and

values for the object. Each named entity within an object can be any type of variable, number, string,

array, boolean, and another object. Objects can also be stored in an array.

Objects can be expanded to include additional named elements at any time and are not limited to the

named elements when they are created. You can reference the elements within an object using either the

name of the element (object.element) or by using a text string or variable (object["element"]) as the

name of the element. The following examples all reference the moveTime element of the status object.

var status = {moveDistance:0, moveTime:0, feedrate:0};

…

writeln("Move time = " + status.moveTime);

writeln("Move time = “ + status["moveTime"];

var element = "moveTime";

writeln("Move time = " + status[element];
Referencing Elements Within an Object

var a = new Object(); // creates a blank object, without named elements

var a = {x:1, y:2, z:3}; // creates an object for storing coordinates

a.feed = 10.0; // adds the 'feed' element to the 'a' Object

a["feed"] = 10.0; // an alternate method for referencing the 'feed' element.

var a = [{x:1, y:2}, {x:3, y:4}, {x:5, y:6}]; // creates an array of 3 xy objects
Object Definitions

3.3.6 The Vector Object

The Vector object is built-in to the post processor and is used to store and work with vectors. The vector

components are stored in the x, y, z elements of the Vector object. Certain post processor variables are

stored as vectors and some functions require vectors as input. A Vector object is created in the same

JavaScript Overview 3-54

 CAM Post Processor Guide 8/8/23

manner as any other object. Vector objects are typically used to store and work on vectors, spatial

points, and rotary angles.

var a = new Vector(); // creates a blank Vector object

var a = new Vector(1, 0, 0); // creates an X-axis vector {x:1, y:0, z:0}

a.x = -1; // assigns -1 to the x element of the vector

setWorkPlane(new Vector(0, 0, 0)); // defines a null vector inline
Sample Vector Definitions

The following tables describe the attributes and functions contained in the Vector object. Since an

attribute is simply a value contained in the Vector object, it does not have an argument.

Attribute Description

abs Contains the absolute coordinates of

the vector

length Contains the length of the vector

length2

negated Contains the negated vector

normalized Contains the normalized/unit vector

x Contains the X-component

y Contains the Y component

z Contains the Z component

Vector Attributes

You can directly modify an attribute of a vector, but if you do then the remaining attributes will not be

updated. For example, if you directly store a value in the x attribute, vec.x = .707, the length attribute of

the vector will not be updated. You should use the vec.setX(.707) method instead.

If the Returns column in the following table has Implicit, then there is no return value, rather the Vector

object associated with the function is modified implicitly. For this reason, if you are going to nest a

Vector function within an expression, do not use the Implicit function, but rather the equivalent function

that returns a vector.

Function Description Returns

divide(value) Divides each component of the object

vector by the value

Implicit

getCoordinate(coordinate) Returns the value of the vector

component (0=x, 1=y, 2=z)

Component of vector

getMaximum() Determines the largest component

value in the vector

Maximum component value

getMinimum() Determines the minimum component

value in the vector

Minimum component value

getNegated() Calculates the negated vector Vector at 180 degrees to the object

vector (vector * -1)

getNormalized() Calculates the normalized/unit vector Normalized or unit vector

getX() Returns the X-coordinate of the vector X-coordinate

getXYAngle() Calculates the angle of the vector in

the XY-plane

Angle of vector in XY-plane

JavaScript Overview 3-55

 CAM Post Processor Guide 8/8/23

Function Description Returns

getY() Returns the Y-coordinate of the vector Y-coordinate

getZ() Returns the Z-coordinate of the vector Z-coordinate

getZAngle() Calculates the Z-angle of the vector

relative to the XY-plane

Z-angle of vector relative to the XY-

plane

isZero() Determines if the vector is a null

vector (0,0,0)

True if it is a null vector

multiply(value) Multiplies each component of the

vector by the value

Implicit

negate() Multiplies each component of the
vector by -1. Creates a vector at 180

degrees to the object vector

Implicit

setCoordinate(coordinate, value) Sets the value of the vector component

(0=x, 1=y, 2=z)

Implicit

setX() Sets the X-coordinate of the vector Implicit

setY() Sets the Y-coordinate of the vector Implicit

setZ() Sets the Z-coordinate of the vector Implicit

toDeg() Converts radians to degrees Angles in degrees

toRad() Converts degrees to radians Angles in radians

toString() Formats the vector as a string, e.g.

 "(1, 2, 3)"

String representation of vector

Vector Object Functions

Static functions do not require an associated Vector object.

Function Description Returns

Vector.cross(left, right) Calculates the cross product of two

vectors

Vector perpendicular to the two

vectors

Vector.diff(left, right) Calculates the difference between two

vectors

Left vector minus right vector

Vector.dot(left, right) Calculates the dot product of the two

vectors

Cosine of angle between the two

vectors

Vector.getAbsolute() Converts the vector components to

absolute values

Vector with absolute coordinates

Vector.getAngle() Calculates the angle between two

vectors

Angle between the two vectors in

radians

Vector.getDistance(left, right) Calculates the distance between two

vectors. Typically used when the

vectors store XYZ spatial coordinates

rather than vectors.

Distance between two points

Vector.getDistance2(left,right) Calculates the square of the distance

between two vectors.

Squared distance between two points.

Vector.lerp(left, right, u) Calculates a point at a percentage of

the distance between the two

coordinates. 'u' specifies the

percentage of the distance to create the
point at.

Point at a percentage of the line

between two points

Vector.product(vector, value) Multiplies each component of the

vector by the value

Vector * value

Vector.sum(left, right) Adds the two vectors Left vector plus right vector

Static Vector Functions

JavaScript Overview 3-56

 CAM Post Processor Guide 8/8/23

b = a.length(); // b = length of Vector a

c = Vector.getAngle(a, b) // c = angle in radians between vectors a and b

var a = new Vector(1, 2, 1.5);

d = a.getMaximum(); // d = 2

b = Vector.getDistance(point1, point2).normalized; // b = directional vector from point1 to point2

b = Vector.dot(vector1, vector2); // b = cosine of angle between vector1 & vector2

b = a.negated; // b = vector at 180 degrees to Vector a
Sample Vector Expressions

3.3.7 The Matrix Object

The Matrix object is built-in to the post processor and is used to store and work with matrices. Matrices

are normally used when working with multi-axis machines, for 3+2 operations and for adjusting the

coordinates for table rotations. Matrices in the post processor contain only the rotations for each axis

and do not contain translation values.

Certain post processor variables are stored as matrices, such as the workPlane variable, and some

functions require matrices as input. A Matrix object has functions that can be used when creating the

matrix and are not dependent on working with an existing matrix.

Assignment Function Definition

Matrix() Identity matrix (1,0,0, 0,1,0, 0,0,1)

Matrix(i1, j1, k1, i2, j2, k2, i3, j3, k3) Canonical matrix

Matrix(scale) Scale matrix

Matrix(right, up, forward) Matrix using 3 vectors

Matrix(vector, angle) Rotation matrix around the vector

Matrix Assignment Functions

var a = new Matrix(); // creates an identity matrix

var a = new Vector(-1, 0, 0, 0,-1,0, 0,0, 1); // creates a matrix rotated 180 degrees in the XY-plane

var a = new Matrix(.5); // creates a half scale matrix

var a = new Matrix(new Vector(1, 0, 0), 30); // creates an X-rotation matrix of 30 degrees
Sample Matrix Definitions

The following tables describe the attributes and functions contained in the Matrix object. Since an

attribute is simply a value contained in the Matrix object, it does not have an argument.

Attribute Description

forward Contains the forward vector

n1 Contains the length of the row vectors

of this matrix

n2 Contains the square root of this matrix

vector lengths

JavaScript Overview 3-57

 CAM Post Processor Guide 8/8/23

Attribute Description

Negated Contains the negated matrix

right Contains the right vector

transposed Contains the inverse matrix

up Contains the up vector

Matrix Attributes

You can directly modify an attribute of a matrix, but if you do then the remaining attributes will not be

updated. For example, if you directly store a vector in the forward attribute, the other attributes will not

be updated to reflect this modification. You should use the matrix.setForward(vector) method instead.

If the Returns column in the following table has Implicit, then there is no return value, rather the Matrix

object associated with the function is modified implicitly. For this reason, if you are going to nest a

Matrix function within an expression, do not use the Implicit function, but rather the equivalent function

that returns a matrix.

Function Description Returns

add(matrix) Adds the specified matrix to this

matrix

Implicit

getColumn(column) Retrieves the matrix column as a

vector

Vector containing the specified

column of this matrix

getElement(row, column) Retrieves the matrix element as a

value

Value of this matrix element

getEuler2(convention) Calculates the angles for the

specified Euler convention

Vector containing Euler angles of

this matrix. Refer to the Work Plane

section of the manual for a

description of Euler conventions.

getForward() Returns the forward vector. This will

be 0,0,1 in an identity matrix

Forward vector of this matrix

getN1() Returns the length of the row vectors

of this matrix

Returns right_vector + up_vector +

forward_vector of matrix

getN2() Returns the square root of this matrix

vector lengths

Math.sqrt(n1)

getNegated() Calculates the negated matrix Matrix * -1.

getRight() Returns the right vector. This will be

1,0,0 in an identity matrix

Right vector of matrix

getRow(row) Retrieves the matrix row as a vector Vector containing the specified row

of this matrix

getTiltAndTilt(first, second) Calculates the X & Y rotations

around the fixed frame to match the

forward direction. 'first' and 'second'

can be 0 or 1 and must be different.

Calculated forward direction of this

matrix

getTransposed() Returns the transposed (inverse) of

the matrix

Inversed matrix

getTurnAndTilt(first, second) Calculates the X, Y, Z rotations

around the fixed frame to match the
forward direction. 'first' and 'second'

can be 0, 1, or 2 and must be

different.

Calculated forward direction

getUp() Returns the up vector. This will be

0,1,0 in an identity matrix

Right vector of matrix

JavaScript Overview 3-58

 CAM Post Processor Guide 8/8/23

Function Description Returns

isIdentity() Determines if the matrix is an

identity matrix (1,0,0, 0,1,0, 0,0,1).

True if it is an identity matrix

isZero() Determines if the matrix is a null
matrix (0,0,0, 0,0,0, 0,0,0)

True if it is a null matrix

multiply(value) Multiplies each component of the

matrix by the value

Result of matrix times specified

value

multiply(matrix) Multiplies the matrix by the specified

matrix

Results of matrix times specified

matrix

multiply(vector) Multiplies the specified vector by the

matrix

Vector multiplied by the matrix

negate() Calculates the negated matrix Implicit

normalize() Calculates the negated matrix Implicit

setColumn(column, vector) Sets the matrix column as a vector Implicit

setElement(row, column, vector) Sets the matrix element Implicit

setForward(vector) Sets the forward vector Implicit

setRight(vector) Sets the right vector Implicit

setRow(row, vector) Sets the matrix row as a vector Implicit

setUp(vector) Sets the up vector Implicit

subtract(matrix) Subtracts the specified matrix from

this matrix

Implicit

toString() Formats the matrix as a string, e.g.

 "[[1, 0, 0], [0, 1, 0], [0, 0, 1]]"

String representation of matrix

transpose() Creates the transposed/inverse of this

matrix

Implicit

Matrix Functions

Static functions do not require an associated Matrix object.

Function Description Returns

Matrix.diff(left, right) Calculates the difference between

two matrices

Left matrix minus right matrix

Matrix.getAxisRotation(vector, angle) Calculates a rotation matrix Rotation matrix of 'angle' radians

around the axis 'vector'

Matrix.getXRotation(angle) Calculates a rotation matrix around

the X-axis

Rotation matrix of 'angle' radians

around the X-axis

Matrix.getXYZRotation(abc) Calculates the rotation matrix for

the given angles

Rotation matrix that satisfies the

specified XYZ rotations

Matrix.getYRotation(angle) Calculates a rotation matrix around

the Y-axis

Rotation matrix of 'angle' radians

around the Y-axis

Matrix.getZRotation(angle) Calculates a rotation matrix around

the Z-axis

Rotation matrix of 'angle' radians

around the Z-axis

Matrix.sum(left,right) Adds the two matrices Left matrix plus right matrix

Static Matrix Functions

var abc = m.getEuler2(EULER_ZXZ_R); // abc = ZXZ Euler angles for m

var t = m.getTransposed(); // t = inverse/transposed matrix of m

var fwd = m.getForward(); // fwd = forward (Z) vector of matrix m

var v = new Vector(0, 0, 1);

JavaScript Overview 3-59

 CAM Post Processor Guide 8/8/23

var q = m.multiply(v); // q = transformation of v though matrix m

var r = Matrix.getZRotation(toDeg(30)); // r = matrix rotated 30 degrees about Z
Sample Matrix Expressions

3.3.8 Deferred Variables

Deferred variables are used to output values to the NC file prior to them being defined. For example,

you could calculate the cutting time or travel distance for each tool while processing the intermediate

file and then reference these values in the tool list that is output at the header of the NC file. This is

accomplished by defining the deferred variables during the normal processing of the intermediate file

and using the deferred variables in an output string at a place that is processed prior to the processing of

the section of the intermediate file that defines the deferred variables.

The way that deferred variables work is by using text substitution in the output NC file. The initial text

string output to the NC file will include the name of the deferred variable enclosed by the defined

separator for defined variables, for example ##id##. After all processing is finished, the post engine will

scan the output NC file for the deferred variable text and replace it with the value stored in the deferred

variable. It is important to know this procedure, since deferred variables cannot be accessed before they

are defined in the post processor, the same as any other variable, except for when they are output to the

NC file.

Deferred variables are stored in the DeferredVariables object, which has the following properties. The

deferred variable properties are referenced as DeferredVariables.property.

DeferredVariables Propery/Function Description

separator Defines the prefix and suffix that will be added to the

deferred variable name when the deferred variable is

initially output to the NC file. This should be a unique

string that is not normally seen in the NC file. The default

is "##".

get(id, format) Retrieves the deferred variable named id and formats it for

output using the provided format as created by

createFormat.

set(id, value) Assigns value to the deferred variable named id. value

must be numeric, it cannot be a text string, boolean, or an

object.

isDefined(id) Returns true if the deferred variable named id has been

defined or false if it has not. Remember that the deferred

variable is defined during the normal processing of the

intermediate file, so if you call isDefined where the

deferred variable is being output prior to processing the

deferred variable definition, it will return false.
Deferred Variables

The following sample code will calculate the cutting time for each tool for linear, circular, and canned

cycle moves. It will output these times in the tool list located in the header of the NC file.

JavaScript Overview 3-60

 CAM Post Processor Guide 8/8/23

// collected state

var toolTime = new Array(); // define an array to store the tool cutting times.
Define the Tool Times Array

function onOpen() {

 DeferredVariables.separator = "^&^"; // define a unique marker for deferred variables

…

 var tools = getToolTable();

 if (tools.getNumberOfTools() > 0) {

 for (var i = 0; i < tools.getNumberOfTools(); ++i) {

 var tool = tools.getTool(i);

 var comment = "T" + toolFormat.format(tool.number) + " " +

 "D=" + xyzFormat.format(tool.diameter) + " " +

 localize("CR") + "=" + xyzFormat.format(tool.cornerRadius);

 if ((tool.taperAngle > 0) && (tool.taperAngle < Math.PI)) {

 comment += " " + localize("TAPER") + "=" + taperFormat.format(tool.taperAngle) +

 localize("deg");

 }

 if (zRanges[tool.number]) {

 comment += " - " + localize("ZMIN") + "=" +

 xyzFormat.format(zRanges[tool.number].getMinimum());

 }

 comment += " - " + localize("TIME") + "=" +

 DeferredVariables.get("tool" + tool.number, xyzFormat); // Output cutting time for tool

 comment += " - " + getToolTypeName(tool.type);

 writeComment(comment);

 }

 }
Output Tool Cutting Times in onOpen

function onSection() {

…

 writeToolBlock("T" + toolFormat.format(tool.number), mFormat.format(6));

 if (tool.comment) {

 writeComment(tool.comment);

 }

 // initialize the cutting time if not previously defined

 toolTime[tool.number] = toolTime[tool.number] ? toolTime[tool.number] : 0;

Initialize the Tool Cutting Time in onSection

function moveIsCutting() {

 return movement == MOVEMENT_CUTTING ||

 movement == MOVEMENT_FINISH_CUTTING ||

 movement == MOVEMENT_REDUCED;

JavaScript Overview 3-61

 CAM Post Processor Guide 8/8/23

}
Determine if this Move is a Cutting Move

function onCyclePoint(x, y, z) {

…

 // calculate the canned cycle cutting time

 if (!cycleExpanded) {

 toolTime[tool.number] += Math.abs(cycle.bottom - cycle.stock) / cycle.feedrate;

 }

}
Calculate the Canned Cycle Cutting Time in onCyclePoint

function onLinear(_x, _y, _z, feed) {

 // calculate linear cutting time

 if (moveIsCutting()) {

 toolTime[tool.number] += Vector.diff(new Vector(_x, _y, _z), getCurrentPosition()).length /

 feed;

 }
Calculate Linear Moves Cutting Time in onLinear

function onCircular (clockwise, cx, cy, cz, x, y, z, feed) {

..

 // calculate circular cutting time

 // be sure to return directly after any calls to linearize or time will be calculated twice

 if (moveIsCutting()) {

 toolTime[tool.number] += getCircularChordLength() / feed;

 }

}
Calculate Circular Moves Cutting Time in onCircular

function onSectionEnd() {

 DeferredVariables.set("tool" + tool.number, toolTime[tool.number]);
Assign the Tool Cutting Time to the Deferred Variable

3.4 Expressions

Variables can be assigned a simple value or text string or can be more complex in nature containing a

list of variables or literals and operators that perform operations on the values contained in the

expression. The following table lists the common operators supported by JavaScript. and provides

samples using the operators. The operator precedence is also listed (column P), where the operators

with a higher precedence number are performed prior to the operators of a lower precedence number.

Operators with the same precedence number will calculate in the order that they appear in the

expression.

Unary operators only require a single operand instead of two. For example, y = x++ will increment the

variable x after it is assigned to the variable y.

JavaScript Overview 3-62

 CAM Post Processor Guide 8/8/23

P Operator Operands Description

13 () Expression Overrides the assigned precedence of operators

12 ++ Integer Unary increment

 -- Integer Unary decrement

 ~ Integer Unary bitwise complement

 ! Boolean Unary logical complement (not)

11 * Number Multiplication

 / Number Division

 % Number Remainder

10 + Number, String Addition

 - Number Subtraction

 9 << Integer Bitwise shift left

 >> Integer Bitwise shift right

 8 < Number, String Less than

 <= Number, String Less than or equal to

 > Number, String Greater than

 >= Number, String Greater than or equal to

 7 == Any Equal to

 != Any Not equal to

 === Any Equal to and same variable type

 !== Any Not equal to and same variable type

 6 & Integer Bitwise AND

 5 ^ Integer Bitwise XOR

 4 | Integer Bitwise OR

 3 && Boolean Logical AND

 2 || Boolean Logical OR

 1 = Any Assignment

 += Number, String Assignment with addition

 -= Number Assignment with subtraction

 *= Number Assignment with multiplication

 /= Number Assignment with division
Expression Operators

x y Expression Result Expression Result

3 5 z = x + y * 3 18 z = (x + y) * 3 24

 z = ++x z = 4, x = 4 z = x++ z = 3, x = 4

 x += y 8 x *= y 15

 z = y / x 1.667 z = y % x 2.0

"Start" "-End" z = x + y "Start-End" x += y "Start-End"

2 3 z = x & y 2 z = x | y 3

1 "1" z = x == y true x === y false

true false z = x true z = !y true

 z = x || y true z = x && y false
Sample Expressions

JavaScript Overview 3-63

 CAM Post Processor Guide 8/8/23

3.5 Conditional Statements

Conditional statements are commands or functions that will test the results of an expression and then

process statements based on the outcome of the conditional. Conditionals typically check Boolean type

expressions, but can also be used to test if a value is undefined or a string is blank.

This section describes the conditional statements and functions used when developing a post processor.

Some of the conditionals are supported by JavaScript and others are inherent in the post processor

kernel.

3.5.1 The if Statement

The if statement is the most common method for testing a conditional and executing statements based on

the outcome of the test. It can contain a single body of statements to execute when the expression is

true, a second body of statements to execute when the expression is false, or it can contain multiple

conditionals that are checked in order using the else if construct.

As with all commands that affect a body of code, if statements can be nested inside of other if bodies and

loops.

The syntax of if statements should follow the Autodesk standard of always including the {} brackets

around each body of code, specifying the opening bracket ({) on the conditional line, and the closing

bracket (}) at the start of the line following the body of code for each section as shown in the following

examples.

if (conditional1) {

 // execute code if conditional1 is true

}

if (conditional1) {

 // execute code if conditional1 is true

} else {

 // execute code if conditional1 is false

}

if (conditional1) {

 // execute code if conditional1 is true

} else if (conditional2) {

 // execute code if conditional1 is false and conditional2 is true

} else {

 // execute code if all conditionals are false

}
If Statement Syntax

JavaScript Overview 3-64

 CAM Post Processor Guide 8/8/23

if (hasParameter("operation-comment")) {

 comment = getParameter("operation-comment");

}

if (isProbeOperation()) {

 var workOffset = probeOutputWorkOffset ? probeOutputWorkOffset : currentWorkOffset;

 if (workOffset > 99) {

 error(localize("Work offset is out of range."));

 return;

 } else if (workOffset > 6) {

 probeWorkOffsetCode = probe100Format.format(workOffset - 6 + 100);

 } else {

 probeWorkOffsetCode = workOffset + "."; // G54->G59

 }

}
Sample If Statements

3.5.2 The switch Statement

The switch statement is similar to an if statement in that it causes a branch in the flow of a program's

execution based on the outcome of a conditional. switch statements are typically used when checking

the value of a single variable, whereas if conditionals can test complex expressions.

The syntax of switch bodies will contain a single switch statement with a variable whose value

determines the code to be executed. case statements will be included in the switch body, with each one

containing the value that causes its body of code to be executed. The end of each case body of code

must have a break statement so that the next case body of code is not executed. A default statement can

be defined that contains code that will be executed if the switch variable does not match any of the case

values.

case statements should follow the Autodesk standard of always including specifying the opening bracket

({) on the switch line, and the closing bracket (}) at the start of the line at the end of the body of code for

each section. The case statements will be aligned with the switch statement and all code within each

case body will be indented.

switch (variable) {

case value1:

 // execute if variable = value1

 break;

case value2:

 // execute if variable = value2

case value3:

 // execute if variable = value3

default:

 // execute if variable does not equal value1, value2, or value3

JavaScript Overview 3-65

 CAM Post Processor Guide 8/8/23

 break;

}

Switch Block Syntax

switch (coolant) {

 case COOLANT_FLOOD:

 m = 8;

 break;

 case COOLANT_THROUGH_TOOL:

 m = 88;

 break;

 case COOLANT_AIR:

 m = 51;

 break;

 default:

 onUnsupportedCoolant(coolant);

 }

}
Sample Switch Blocks

3.5.3 The Conditional Operator (?)

The ? conditional operator tests an expression and returns different values based on whether the

expression is true or false. It is a compact version of a simple if block and is used in an assignment type

statement or as part of an expression.

var a = conditional ? true_value : false_value;
? Conditional Operator

In the above syntax, a will be assigned true_value if the conditional is true, or false_value if it is false.

homeGcode = getProperty("useG30") ? 30 : 28;

// could be expanded into this if block

if (getProperty("useG30")) {

 homeGcode = 30;

} else {

 homeGcode = 28;

}
Sample ? Conditional Operator

JavaScript Overview 3-66

 CAM Post Processor Guide 8/8/23

3.5.4 The typeof Operator

The typeof operator is not a conditional operator per the general terminology, but it is always used as a

part of a conditional to determine if a function or variable exists. When used in an expression it will

return a string that describes the variable type of the operand. This is the only way to test if a function

exists prior to calling the function or if a variable exists before referencing it. If you try to reference a

non-existent variable or function without testing to see if it exists first, the post processor will terminate

with an error.

The typeof operator is followed by a single operand name, i.e. "typeof variable". It can return the

following string values.

Operand Type Return Values

number "number"

string "string"

boolean "boolean"

object, array, null "object"

function "function"

undefined "undefined"
typeof Return Values

if ((typeof getHeaderVersion == "function") && getHeaderVersion()) {

 writeComment(localize("post version") + ": " + getHeaderVersion());

}
Sample typeof Usage

3.5.5 The conditional Function

The conditional function will test an expression and if it is true will return the specified value. If the

expression is false, then a blank string is returned. The conditional function is mainly used for

determining if a specific code should be output in a block.

conditional(expression, true_value)
conditional Syntax

writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(82),

 getCommonCycle(x, y, z, cycle.retract),

 conditional(P > 0, "P" + milliFormat.format(P)), //optional

 feedOutput.format(F)

);
conditional Usage

Since conditional is a function, any function calls contained in the arguments will be processed even if

the expression equates to false. This means that if a modal is used to format a value, the value will be

JavaScript Overview 3-67

 CAM Post Processor Guide 8/8/23

formatted prior to evaluating the expression and the modal’s current value will be set using this value,

even if the value is not output.

writeBlock(conditional(isRapid, gMotionModal.format(0)), x, y, z);
Sets the gMotionModal Modal Value to 0 Even when isRapid is false and G00 is not Output

3.5.6 try / catch

The try/catch block is an exception handling mechanism. This allows the post processor to control the

outcome of an exception. Depending on the exception that is encountered, the JavaScript code could

continue processing or terminate with an error. The try/catch block is used to override the normal

processing of exceptions in JavaScript.

try {

 // code that may generate an exception

} catch (e) { // e is a local variable that contains the exception object or value that was thrown

 // code to perform if an exception is encountered

}
try/catch Syntax

try {

 programId = getAsInt(programName);

} catch(e) {

 error(localize("Program name must be a number."));

 return;

}
try/catch Usage

3.5.7 The validate Function

The validate function tests an expression and raises an exception if the expression is false. The post

processor will typically output an error if an exception is raised, so in essence, the validate function

determines if an expression is true or false and outputs an error using the provided message if it is false.

validate(expression, error_message)
validate Syntax

validate(retracted, "Cannot cancel length compensation if the machine is not fully retracted.");
Sample validate Code

In the above sample, an error will be generated if retracted is set to false.

JavaScript Overview 3-68

 CAM Post Processor Guide 8/8/23

3.5.8 Comparing Real Values

Real values are stored as binary numbers and are not truncated as you see them in an output file, so there

are times when the numbers are not equal even if they show as the same value in the output file. For this

reason, it is recommended that you either use a tolerance or truncate them when comparing their values.

The format.getResultingValue function can be used to truncate a number to a fixed number of decimal

places.

var a = 3.141592654;

var b = 3.141593174;

// simple comparison

if (a == b) { // false

// comparison using a tolerance

var toler = .0001;

if (Math.abs(a – b) <= toler) { // true

// comparison using truncated values

var spatialFormat = createFormat({decimals:4});

if ((spatialFormat.getResultingValue(a) - spatialFormat.getResultingValue(b)) == 0) { // true

Comparing Real Values

3.6 Looping Statements

Loops perform repetitive actions. There are various styles of looping statements; for, for/in, while, and

do/while. You should choose the looping statement that lends itself to the style of loop you are coding.

The syntax of looping statements should follow the Autodesk standard of always including the {}

brackets around each body of code, specifying the opening bracket ({) on the looping statement, and the

closing bracket (}) at the start of the line following the body of code for the loop. Loops can be nested

within other bodies of code, like conditionals or other loops.

3.6.1 The for Loop

The for loop is the most common of the looping statements. It includes a counter and an expression on

when to end the loop, so it will loop through the body of the loop a fixed number of times, unless

interrupted by the break command. The counter variable is initialized before the loop starts and is

tested when the expression is evaluated before each iteration of the loop. The counter variable is

incremented at the end of the loop, just before the expression is evaluated again.

Multiple counters can be initialized and incremented in a for loop by separating the counters with a

comma (,).

for(initialize_counter; test expression ; increment_counter) {

JavaScript Overview 3-69

 CAM Post Processor Guide 8/8/23

 // body of loop

}
for Loop Syntax

for (var i = 0; i < getNumberOfSections(); ++i) { // loop for the number of sections in intermediate file

 if (getSection(i).workOffset > 0) {

 error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));

 return;

 }

}

for (i = 0, j = ary.length - 1 ; i < ary.length / 2; ++i, --j) { // reverse the order of an array

 var tl = ary[i];

 ary[i] = ary[j];

 ary[j] = tl;

}
Sample for Loops

3.6.2 The for/in Loop

The for/in loop allows you to traverse the properties of an object. It is not commonly used in post

processors (except for the dump.cps post processor), but can be useful for debugging the property names

and values in an object.

for(variable in object) {

 // body of loop

}
for/in Loop Syntax

for(var element in properties) { // write out the property table

 writeln("properties." + element + " = " + properties[element]);

}
Sample for/in Loop

3.6.3 The while Loop

The while loop evaluates an expression and will execute the body of the loop when the expression is true

and will end the loop when the expression is false. Since the expression is tested at the top of the loop,

the body of code in the loop will not be executed when the expression is initially set to false.

while (expression) {

 // body of loop

}
while Loop Syntax

JavaScript Overview 3-70

 CAM Post Processor Guide 8/8/23

while (c > 2*Math.PI) {

 c -= 2 * Math.PI;

}
Sample while Loop

3.6.4 The do/while Loop

The do/while loop is pretty much the same as the while loop, but the expression is tested at the end of

the loop rather than at the start of the loop. This means that the loop will be executed at least once, even

if the expression is initially set to false.

do {

 // body of loop

} while (expression)
do/while Loop Syntax

var i = 0;

var found = false;

do {

 if (mtype[i++] == "Start") {

 found = true;

 }

} while (!found && i < mtype.length);
Sample do/while Loop

3.6.5 The break Statement

The break statement is used to interrupt a loop or switch statement prematurely. When the break

statement is encountered during a loop or switch body, then the innermost loop/switch will be ended and

control will move to the first statement outside of the loop/switch.

break is pretty much mandatory with switch statements. For loops, break can be used to get out of the

loop when an error is encountered, or when a defined pattern is found within an array.

for (i = 0; i < mtype.length; ++i) {

 if (mtype[i] == "Start") {

 break; // exits the loop

 }

}
Sample Usage of break Command

3.6.6 The continue Statement

The continue statement is used to bypass the remainder of the loop body and restarts the loop at the next

iteration.

JavaScript Overview 3-71

 CAM Post Processor Guide 8/8/23

for (i = 0; i < mtype.length; ++i) {

 if (mtype[i] < 0) {

 continue; // skips this iteration of the loop and continues with the next iteration

 }

 …

}
Sample Usage of break Command

3.7 Functions

Functions in JavaScript behave in the same manner as functions in other high-level programming

languages. In a post processor all code, except for the global settings at the top of the file, is contained

in functions, either entry functions (onOpen, onSection, etc.) or helper functions (writeBlock,

setWorkPlane, etc.). The code in a function will not be processed until that function is called from

within another routine (for the sake of clarity the calling function will be referred to as a 'routine' in this

section). Here are the main reasons for placing code in a separate function rather than programming it in

the upper level routine that calls the function.

1. The same code is executed in different areas of the code, either from the same function or in

multiple functions. Placing the common code in its own function eliminates duplicate code from

the file, making it easier to understand and maintain.

2. To logically separate logic and make it easier to understand. Separating code into its own

function can keep the calling routine from becoming too large and harder to follow, even if the

function is only called one time.

3.7.1 The function Statement

A function consists of the function statement, a list of arguments, the body of the function (JavaScript

code), and optional return statement(s).

function name([arg1 [,arg2 […, argn]]]) {

 …

 code

 …

}
function Statement Syntax

The argument list is optional and contains identifiers that are passed into the function by the calling

routine. The arguments passed to the function are considered read-only as far as the calling routine is

concerned, meaning that any changes to these variables will be kept local to the called function and not

propagated to the calling routine. You use the return statement to return value(s) to the calling routine.

function writeComment(text) {

 writeln(formatComment(text)); // text is accepted as an argument and passed to formatComment

JavaScript Overview 3-72

 CAM Post Processor Guide 8/8/23

}
Sample function Definition

Arguments accepted by a function can either be named identifiers as shown in the previous example, or

you can use the arguments array to reference the function arguments. The arguments array is built-in to

JavaScript and is treated as any other Array object, meaning that it has the length property and access to

the Array attributes and functions.

 transferType = parseChoice(getProperty("transferType"),"PHASE","SPEED","STOP");

…

function parseChoice() {

 for (var i = 1; i < arguments.length; ++i) {

 if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {

 return i - 1;

 }

 }

 return -1;

}
Sample Usage of arguments Array

3.7.2 Calling a function

A function call is treated the same as any other expression. It can be standalone, assign a value, and be

placed anywhere within an expression. The value returned by the called function is treated as any other

variable. You simply type the name of the function with its arguments.

setWorkPlane(abc); // function does not return a value

seqno = formatSequenceNumber(); // function returns a value

circumference = getRadius(circle) * 2.0 * Math.PI; // function used in a regular expression
Sample function Calls

3.7.3 The return Statement

As you can see in the previous sections, a function can be treated the same as any other expression and

all expressions have values. The return statement is used to provide a value back to the calling routine.

You will recall that a function does not have to return a value, in this case you do not have to place a

return statement in the function, the function will automatically return when the end of the function body

is reached. You can place a return statement anywhere within the function, the function will be ended

whenever a return statement is reached.

return [expression]
return Statement Syntax

The return value can be any valid variable type; a number, string, object, or array. If you want to return

multiple values from a function, then you must return either an object or an array. You can also

Entry Functions 4-73

 CAM Post Processor Guide 8/8/23

propagate the JavaScript this object which will be automatically returned to the calling routine when the

end of the function is reached or when processing a return statement without an expression. If the this

object is used, then the function will be used to create a new object and you will need to define the

function call as if you were creating any other type of object as shown in the following example.

function writeComment(text) {

 writeln(formatComment(text));

} // implicit return

function parseChoice() {

 for (var i = 1; i < arguments.length; ++i) {

 if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {

 return i - 1; // return the matching choice

 }

 }

 return -1; // return choice not found

}

function FeedContext(id, description, feed) {

 this.id = id;

 this.description = description;

 this.feed = feed;

} // return this object {id, description, feed}

var feedContext = new FeedContext(id, "Cutting", feedCutting); // create new FeedContext object
Sample return Usage

4 Entry Functions
The post processor Entry functions are the interface between the kernel and the post processor. An

Entry function will be called for each record in the intermediate file. Which Entry function is called is

determined by the intermediate file record type. All Entry functions have the 'on' prefix, so it is

recommended that you do not use this prefix with any functions that you add to the post processor.

Here is a list of the supported Entry functions and when they are called. The following sections in this

Chapter provide more detailed documentation for the most common of the Entry functions.

Entry Function Invoked When …

onCircular(clockwise, cx, cy, cz, x, y, z, feed) Circular move

onClose() End of post processing

onCommand(value) Manual NC command not handled in its own

function

onComment(string) Comment Manual NC command

onCycle() Start of a cycle

Entry Functions 4-74

 CAM Post Processor Guide 8/8/23

Entry Function Invoked When …

onCycleEnd() End of a cycle

onCyclePoint(x, y, z) Each cycle point

onDwell(value) Dwell Manual NC command

onLinear(x, y, z, feed) 3-axis cutting move

onLinear5D(x, y, z, a, b, c, feed) 5-axis cutting move

onMachine() Machine configuration changes

onManualNC() Manual NC commands

onMovement(value) Movement type changes

onOpen() Post processor initialization

onOrientateSpindle(value) Spindle orientation is requested

onParameter(string, value) Each parameter setting

onPassThrough(string) Pass through Manual NC command

onPower(boolean) Power mode for water/plasma/laser changes

onRadiusCompensation() Radius compensation mode changes

onRapid(x, y, z) 3-axis Rapid move

onRapid5D(x, y, z, a, b, c) 5-axis Rapid move

onRewindMachine(a, b, c) Rotary axes limits are exceeded

onSection() Start of an operation

onSectionEnd() End of an operation

onSectionEndSpecialCycle() End of a special cycle operation

onSectionSpecialCycle() Start of a special cycle operation (Stock Transfer)

onSpindleSpeed(value) Spindle speed changes

onTerminate() Post processing has completed, output files are closed

onToolCompensation(value) Tool compensation mode changes

Entry Functions

4.1 Global Section

The global section is not an Entry function, but rather is called when the post processor is first

initialized. It defines settings used by the post processor kernel, the property table displayed with the

post processor dialog inside of HSM, definitions for formatting output codes, and global variables used

by the post processor.

While the global section is typically located at the top of the post processor, any variables defined

outside of a function are in the global section and accessible by all functions, even the functions defined

before the variable. You may notice global variables being defined in the middle of the post processor

Entry Functions 4-75

 CAM Post Processor Guide 8/8/23

code just before a function. This allows for a group of functions to be easily cut-and-pasted from one

post to another post, including the required global variables.

4.1.1 Kernel Settings

Some of the variables defined in the global section are actually defined in and used by the post engine.

These variables are usually at the very top of the file and are easily discerned, since they are not

preceded by var. The following table provides a description of the kernel settings that you will find in

most post processors.

Setting Description

allowedCircularPlanes Defines the allowed circular planes. This setting is described in the

onCircular section.

allowHelicalMoves Specifies whether helical moves are allowed. This setting is described in

the onCircular section.

allowSpiralMoves Specifies whether spiral moves are allowed. This setting is described in

the onCircular section.

capabilities Defines the capabilities of the post processor. The capabilities can be

CAPABILITY_MILLING, CAPABILITY_TURNING,

CAPABILITY_JET, CAPABILITY_SETUP_SHEET, and

CAPABILITY_INTERMEDIATE. Multiple capabilities can be enabled

by using the logical OR operator.

capabilities = CAPABILITY_MILLING | CAPABILITY_TURNING;

certificationLevel Certification level of the post configuration used to determine if the post

processor is certified to run against the post engine. This value rarely

changes.

description Short description of post processor. This will be displayed along with the

post processor name in the Post Process dialog in HSM when selecting a

post processor to run.

extension The output NC file extension.

highFeedMapping Specifies the high feed mapping mode for rapid moves. Valid modes are

HIGH_FEED_NO_MAPPING, HIGH_FEED_MAP_MULTI,

HIGH_FEED_MAP_XY_Z, and HIGH_FEED_MAP_ANY. This setting

can be changed dynamically in the Property table when running the post

processor.

highFeedrate Specifies the feedrate to use when mapping rapid moves to linear moves.

legal Legal notice of company that authored the post processor

mapToWCS Specifies whether the work plane is mapped to the model origin and work

plane. When disabled the post is responsible for handling mapping from

the model origin to the setup origin. This variable must be defined using

the following syntax and can only be defined in the global section. Any

deviation from this format, including adding extra spaces, will cause this

command to be ignored.

mapToWCS = true;

Entry Functions 4-76

 CAM Post Processor Guide 8/8/23

Setting Description

mapToWCS = false;

mapWorkOrigin Specifies whether the coordinates are mapped to the work plane origin.

When disabled the post is responsible for handling the work plane origin.

This variable must be defined using the following syntax and can only be

defined in the global section. Any deviation from this format, including

adding extra spaces, will cause this command to be ignored.

mapWorkOrigin = true;

mapWorkOrigin = false;

maximumCircularRadius Specifies the maximum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. This setting is described in the

onCircular section.

maximumCircularSweep Specifies the maximum circular sweep of circular moves that can be

output as circular interpolation. This setting is described in the onCircular

section.

minimumChordLength Specifies the minimum delta movement allowed for circular interpolation

and can be changed dynamically in the Property table when running the

post processor. This setting is described in the onCircular section.

minimumCircularRadius Specifies the minimum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. This setting is described in the

onCircular section.

minimumCircularSweep Specifies the minimum circular sweep of circular moves that can be output

as circular interpolation. This setting is described in the onCircular

section.

minimumRevision The minimum revision of the post kernel that is supported by the post

processor. This value will remain the same unless the post processor takes

advantage of functionality added to a later version of the post engine that

is not available in earlier versions.

programNameIsInteger Specifies whether the program name must be an integer (true) or can be a

text string (false).

tolerance Specifies the tolerance used to linearize circular moves that are expanded

into a series of linear moves. This setting is described in the onCircular

section.

unit Contains the output units of the post processor. This is usually the same as

the input units, either MM or IN, but can be changed in the onOpen

function of the post processor by setting it to the desired units.

vendor Name of the machine tool manufacturer.

vendorUrl URL of the machine tool manufacturer's web site.
Post Kernel Settings

description = "RS-274D";

vendor = "Autodesk";

Entry Functions 4-77

 CAM Post Processor Guide 8/8/23

vendorUrl = "http://www.autodesk.com";

legal = "Copyright (C) 2012-2017 by Autodesk, Inc.";

certificationLevel = 2;

minimumRevision = 24000;

longDescription = "Generic post for the RS-274D format. Most CNCs will use a format very similar

to RS-274D. When making a post for a new CNC control this post will often serve as the basis.";

extension = "nc";

setCodePage("ascii");

capabilities = CAPABILITY_MILLING;

tolerance = spatial(0.002, MM);

minimumChordLength = spatial(0.01, MM);

minimumCircularRadius = spatial(0.01, MM);

maximumCircularRadius = spatial(1000, MM);

minimumCircularSweep = toRad(0.01);

maximumCircularSweep = toRad(180);

allowHelicalMoves = true;

allowedCircularPlanes = undefined; // allow any circular motion
Sample Post Kernel Settings Code

4.1.2 Property Table

Library post processors are designed to run the machine without any modifications, but may not create

the output exactly as you would like to see it. The Property Table contains settings that can be changed

at runtime so that the library post can remain generic in nature, but still be easily customized by various

users. The settings in the Property Table will typically be used to control small variations in the output

created by the post processor, with major changes handled by settings in the Fixed Settings section.

The properties can be displayed in multiple areas of HSM; when you use the Post Process dialog to run

the post processor, in an NC Program, under the Post Processing tab in the Machine Configuration, and

in the Post Process tab of an operation. When you Post Process from HSM or edit an NC Program you

may be presented with a dialog that allows you to select the post processor to execute, the output file

path, and other settings. The Property Table will also be displayed in the dialog allowing you to

override settings within the post processor each time it is run.

Entry Functions 4-78

 CAM Post Processor Guide 8/8/23

Property Table in NC Program

 Property Table in Machine Configuration Property Table in Operation

Entry Functions 4-79

 CAM Post Processor Guide 8/8/23

Property Table in Inventor/HSMWorks Post Process Dialog

The Property Table is defined in the post processor so you have full control over the information

displayed in it, with the exception of the Built-in properties, which are displayed with every post

processor and define the post kernel variables described previously. The properties object defined in the

post processor defines the property names as they are used in the post processor, the titles displayed in

the Property Table, the accepted input types, the default values assigned to each property, and settings

controlling the display attributes of the property in the property table.

// user-defined properties

properties = {

 writeMachine: {

 title: "Write machine",

 description: "Output the machine settings in the header of the code.",

 group: "general",

 type: "boolean",

 value: true,

 scope: "post"

 },

 useSmoothing: {

 title: "SGI / High Precision Mode",

 description: "High-Speed High-Precision Parameter.",

 type: "enum",

 group: "preferences",

 values:[

 {title:"Off", id:"-1"},

 {title:"Automatic", id:"9999"},

 {title:"Standard", id:"0"},

 {title:"High Speed", id:"1"},

Entry Functions 4-80

 CAM Post Processor Guide 8/8/23

 {title:"High Accuracy", id:"2"},

 {title:"Special", id:"3"}

],

 value: "-1",

 scope: ["post", "operation"]

 }, …

}
Property Table Definition

The following table describes the supported members in the properties object. It is important that the

format of the properties object follows the above example, where the name of the variable is first,

followed by a colon (:), and the members enclosed in braces ({}). The values property is an array and

its members must be enclosed in brackets ([]).

Property Description

title Description of the property displayed in the User Interface within the

Property column.

description A description of the property displayed as a tool tip when the mouse is

positioned over this property.

group The group name that this property belongs to. All properties with the same

group name will be displayed together in the User Interface. The groups are

defined by the groupDefinitions object discussed further in this chapter.

type Defines the input type. The input types are described in the following table.

value The default value for this property.

range The minimum and maximum allowable values for a numeric property

specified as an array ([-1000, 1000]).

values Contains a list (array) of choices for the enum, integer, or boolean input

types. It is not valid with any other input type. For boolean values, it should

be an array of 2 strings, with the first entry representing true and the second

representing false.

presentation Defines how a boolean will be displayed in the property table. Valid settings

are defined as a text string and can be “yesno” (Yes/No), “truefalse”

(True/False), “onoff” (On/Off), and “10” (1/0).

scope Tells the post which dialogs will display this property. Supported settings are

post, machine, and operation. The setting must be specified as a text string.

scope can be a single value or an array of the supported dialogs. Examples:

scope: “post”, scope: [“post”, “machine”]. There are caveats when

enabling a property in more than one dialog type as described in the

Property Scopes section of this chapter.

enabled Specifies the operation type where this property will be displayed in the HSM

operation dialog. This property only applies to operation properties and has

no effect on post and machine properties. The setting must be specified as a

text string or an array of text strings. Valid settings are “milling”, “turning”,

“drilling”, “probing”, “inspection”, and “additive”.

Entry Functions 4-81

 CAM Post Processor Guide 8/8/23

Property Description

visible Defines whether a property is visible in the NC Program and Operation

dialogs. This setting has no effect on the Machine Configuration or legacy

Post Process dialogs. It can be set to true or false.
Properties Settings

Input Type Description

"integer" Integer value

"number" Real value

"spatial" Real value

"angle" Angular value in degrees

"boolean" true or false

"string" Text string

"enum" The enum input type defines this variable as having fixed choices associated

with it. These choices are defined individually in the values property array.

An enum input type should be defined using string values.
Property Table Input Types

Values Property Description

title The text of the choice item displayed in the User Interface for this variable.

id The value that will be returned in the variable when the post processor is

called. All references to this property, e.g. getProperty("rotaryTableAxis"),

in the post processor should expect only one of these id values as its value.

The id must be a text string when associated with an enum input type or an

integer value when associated with an integer.
Enum Choices Properties

4.1.3 Property Scopes

When multiple dialog types are specified for the scope property there is a hierarchy that defines which

dialog has final say in the property value passed to the post processor. This hierarchy is as follows.

1. Operation property

2. Post property

3. Machine property

Therefore, if a property is defined as a post and an operation property, then the setting made in the Post

Process, and NC Program dialogs will be ignored by the post processor, only the setting made in each

separate operation will be used by the post processor. The only place you would be able to query the

Post Process property setting is in onOpen when using the getProperty function. For these reasons it is

highly recommended that operation properties are not defined in the post or machine scopes.

When specifying a property as a machine and post property, the setting made to the property in the

Machine Configuration dialog will become the default setting for the post property displayed in the

Entry Functions 4-82

 CAM Post Processor Guide 8/8/23

corresponding dialogs. If the property setting is changed in the post dialog, then this value will override

the machine property setting.

4.1.4 Operation Properties

Operation properties are shown in the Post Process tab of the Operation dialog and are defined by

including operation in the scope of the property.

 gotChipConveyor: {

 title : "Use chip transport",

 description: "Enable to turn on the chip transport for this operation.”,

 group : "configuration",

 type : "boolean",

 value : false,

 scope : "operation",

 enabled : "milling"

 },
Defining an Operation Property

Property Displayed in an Operation Dialog

To display operation properties in Fusion 360 or Inventor CAM it is required that a Machine

Configuration be assigned to the Manufacturing Setup. The reason is that the Machine Configuration

has a post processor assigned to it and the operation properties are obtained from this known post

processor.

Operation Properties Require a Machine Configuration

Entry Functions 4-83

 CAM Post Processor Guide 8/8/23

Assigning a Post Processor to a Machine Configuration

The enabled parameter in the property definition specifies the operation type where this property will be

displayed in the HSM Operation dialog. This property only applies to operation properties and has no

effect on post and machine properties. The setting must be specified as a text string or an array of text

strings.

enabled Setting Operation type property is displayed with

"milling" All milling and drilling operations.

"turning" All turning operations.

"drilling" All drilling operations.

"probing" All probing operations.

"inspection" All inspection operations.

"additive" All additive operations.

"operation-strategy" Only operations of the specified operation strategy, for example "face",

"contour2D", "adaptive2D", "turningRoughing", etc. You can find the

strategy for a certain operation type by running the Dumper post processor

(dump.cps) and searching for operation-strategy. The operation strategies can

be placed in an array to allow multiple strategies to be specified, for example:

enabled : ["contour2d", "chamfer2d"].
Property Table Input Types

4.1.5 Property Groups

The display order of the properties is controlled by the group setting in the property definition and in the

groupDefinitions object, which defines which group the property belongs to and the order that the

groups are displayed in the Property table in each dialog.

The post processor has a number of built-in property groups as defined in the following table. You can

reference these groups in the property definition without creating the group in the groupDefinition

object.

Group Title Description Order Collapsed

configuration Configuration Configuration options 10 true

Entry Functions 4-84

 CAM Post Processor Guide 8/8/23

preferences Preferences User preferences 20 false

homePositions Safe retracts and

home positioning

Settings related to safe retracts and

home positioning

30 true

multiAxis Multi-axis Multi-axis settings 40 true

formats Formats NC code format settings 50 true

probing Probing and

Inspection

Probing and inspection settings 60 true

Built-in Group Definition

If a property does not fit into a predefined group, you can add to the built-in groups by defining these

groups within the groupDefinitions object. In the following example, the subSpindle group will be

displayed after the built-in configuration group and the looping group will be displayed after the built-in

preferences group. This is determined by the value assigned to the order property.

// define the custom property groups

groupDefinitions = {

 subSpindle: {title: "Sub spindle", description: "Sub spindle options", collapsed:true, order:15},

 looping: {title:"Looping", description: "Looping control", collapsed:true, order:25}

};
Property Group Definition

The following table describes the supported properties in the groupDefinitions object. It is important

that the format of the groupDefnitions object follows the above example, where the name of the group is

first, followed by a colon (:), and the properties enclosed in braces ({}).

Each group referenced in the properties definition and not one of the built-in property groups should be

defined in groupDefinitions.

Property Description

title Title of the group displayed in the Post properties table. The title is not

displayed in the legacy Post Process dialog.

description A description of the group displayed as a tool tip when the mouse is

positioned over this group name.

order A number defining the displayed placement of the group in the Post

properties table. For example, a value of less than 10 will be displayed first,

25 will display between the preferences and homePositions groups, and a

value of 70 will be displayed after the probing group.

collapsed Defines whether the group will be collapsed or expanded by default in the

Post properties table. true collapses the group and false expands the group.
Group Definition Settings

Entry Functions 4-85

 CAM Post Processor Guide 8/8/23

Property Groups

4.1.6 Accessing Properties

getProperty(property [,default-value])

section.getProperty(property [,default-value])

Arguments Description

property The property you want to retrieve the value of. It can be specified as a text

string (“useSmoothing”) or as a direct reference to the property

(properties.useSmoothing). It is recommended to use the text string syntax.

The section.getProperty function can be used to obtain the value of a property

for a specific section. If the specified property is not an operation property,

then the post property value will be returned. The section.getProperty function

only needs to be used if you need to know the value of an operation property

outside of when the operation is being processed, for example in onOpen.

default-value The value to return from getProperty if the specified property does not exist.

If a default value is not specified and the property does not exist, then

undefined will be returned.

The getProperty function is used to obtain the value of a post processor property.

showSequenceNumbers = getProperty(“showSequenceNumbers”);

if (getProperty(properties.showSequenceNumbers) {

var smooth = section.getProperty(“useSmoothing”, false);
Sample getProperty Calls

function setProperty(property, value)

Entry Functions 4-86

 CAM Post Processor Guide 8/8/23

Arguments Description

property The property you want to set the value of. It can be specified as a text string

(“useSmoothing”) or as a direct reference to the property

(properties.useSmoothing). It is recommended to use the text string syntax.

value The value to set the property to.

The setProperty function is used to set the value of a post processor property.

setProperty("showSequenceNumbers", true);

setProperty(properties.showSequenceNumbers, true);
Sample setProperty Calls

4.1.7 Format Definitions

The format definitions area of the global section is used to define the formatting of codes output to the

NC file. It consists of the format definitions (createFormat) as well as definitions that determine when

the codes will be output or suppressed (createOutputVariable).

The createFormat command defines how codes are formatted before being output to the NC file. It can

be used to create a complete format for an output code, including the letter prefix, or to create a primary

format that is referenced with the output definitions. It has the following syntax.

createFormat({specifier:value, specifier:value, …});
createFormat Syntax

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (:)

and then by a value. Multiple specifiers are separated by commas.

Specifier Value

base The base increment of the output value. For example, a value of .002 will

only output values on a .002 increment (.002, .004, .010, etc.). The default

is 0.

decimals Defines the number digits to the right of the decimal point to output. The

default is 6.

forceSign When set to true will force the output of a plus (+) sign on positive

numbers. The default is false.

inherit Inherits all properties from an existing FormatNumber.

minDigitsLeft The minimum number of digits to the left of the decimal point to output.

The default is 1.

minDigitsRight The maximum number of digits to the right of the decimal point to output.

The default is 0.

maximum The unsigned maximum value that can be output. Formatted positive values

will not be greater than this value and formatted negative values will not be

less than the negative value. For example, defining a maximum value of

Entry Functions 4-87

 CAM Post Processor Guide 8/8/23

Specifier Value

9999.99 will limit the output values to -9999.99 through 9999.99. The

default is unlimited.

minimum The unsigned minimum value that can be output. Formatted positive values

will not be less than this value and formatted negative values will not be

greater than the negative value. For example, defining a minimum value of

0.001 will limit the output values to less than -0.001 or greater than 0.001.

The default is 0.

offset Defines a number to add to the value prior to formatting it for output. The

default is 0.

prefix Defines the prefix of the output value as a text string. The prefix should

only be defined if this is a standalone format and is not used for multiple

output definitions. The default is "".

scale Defines a scale factor to multiply the value by prior to formatting it for

output. scale can be a number or a number designator, such as DEG. The

default is 1.

separator Defines the character to use as the decimal point. The default is '.'.

suffix Defines the suffix of the output value as a text string. The suffix should

only be defined if this is a standalone format and is not used for multiple

output definitions. The default is "".

type Defines the format of the number. Can be one of the following.

• FORMAT_INTEGER – whole numbers do not contain a decimal

point, fractional numbers contain a decimal point.

• FORMAT_REAL – all numbers contain a decimal point.

• FORMAT_LZS – Leading Zero Suppression. The decimal point is

omitted and leading zeros are removed, including leading zeros in

the fractional portion of the number if the value is less than 1.

• FORMAT_TZS – Trailing Zero Suppression. The decimal point is

omitted and trailing zeros are removed, including trailing zeros in

the whole number if the fractional part is set to 0.

The default is FORMAT_INTEGER.
createFormat Specifiers

The createFormat function creates a FormatNumber object. Once a FormatNumber is created, it can be

used to create a formatted text string of a value that matches the properties in the defined format. The

following table describes the functions defined in the FormatNumber object.

Function Description

areDifferent(a, b) Returns true if the input values are different after being formatted.

format(value) Returns the formatted text string representation of the number.

getBase() Returns the base increment of the format.

getDecimalSymbol() Returns the character used as the decimal point symbol.

getError(value) Returns the inverse of the remaining portion of the value that is not

formatted for the number. For example, if the formatted value of

Entry Functions 4-88

 CAM Post Processor Guide 8/8/23

Function Description

4.5005 is "4.500", then the value returned from getError will be -

0.0005.

getForceSign() Returns true if the + sign is output in the formatted number.

getMaximum() Returns the maximum value that can be output.

getMinDigitsLeft() Returns the minimum number of digits to output to the left of the

decimal point.

getMinDigitsRight() Returns the minimum number of digits to output to the right of the

decimal point.

getMinimum() Returns the minimum value that can be output.

getMinimumValue() Returns the minimum value that can be formatted using this format,

for example, 1 for decimals:0, .1 for decimals:1, etc.

getNumberOfDecimals() Returns the maximum number of digits to output to the right of the

decimal point.

getOffset() Returns the number to add to the formatted number.

getPrefix() Returns the prefix of the formatted number.

getResultingValue(value) Returns the real value that the formatted output text string

represents.

getScale() Returns the scale to apply to the formatted number.

getSuffix() Returns the suffix of the formatted number.

getType() Returns the formatting type.

isSignificant(value) Returns true if the value will be non-zero when formatted.

setBase(base) Defines the base increment of the format.

setDecimalSymbol('symbol') Defines the character used as the decimal point symbol.

setForceSign(forceSign) Determines if the + sign is output in the formatted number.

setMaximum(max) Defines the maximum value that can be output.

setMinDigitsLeft(min) Defines the minimum number of digits to output to the left of the

decimal point.

setMinDigitsRight(min) Defines the minimum number of digits to output to the right of the

decimal point.

setMinimum(min) Defines the minimum value that can be output.

setNumberOfDecimals(number) Defines the maximum number of digits to output to the right of the

decimal point.

setOffset(offset) Defines the number to add to the formatted number.

setPrefix(prefix) Defines the prefix of the formatted number.

setScale(scale) Defines the scale to apply to the formatted number.

setSuffix() Defines the suffix of the formatted number.

setType() Sets the formatting type, FORMAT_INTEGER, FORMAT_REAL,

FORMAT_LZS, or FORMAT_TZS.
FormatNumber Functions

The following table shows how a value of 0 could be formatted depending on the format type and

settings for the minimum digits to the left and right of the decimal point.

Entry Functions 4-89

 CAM Post Processor Guide 8/8/23

FORMAT_INTEGER

minDigitsLeft:0

minDigitsRight:0

FORMAT_INTEGER

minDigitsLeft:1

minDigitsRight:0

FORMAT_REAL

minDigitsLeft:1

minDigitsRight:0

FORMAT_REAL

minDigitsLeft:0

minDigitsRight:1

X X0 X0. X.0
Formatting the Number Zero

var xFormat = createFormat({type:FORMAT_REAL, decimals:3, minDigitsRight:3, forceSign:true});

xFormat.format(4.5); // returns "+4.500"

xFormat.areDifferent(9.123, 9.1234); // returns false, both numbers are 9.123

xFormat.getMinimumValue(); // returns 0.001

xFormat.isSignificant(.0006); // returns true (rounded to .001)

xFormat.isSignificant(.0004); // returns false

var yFormat = createFormat({prefix:"Y", decimals:3, forceSign:true});

yFormat.format(4.5); // returns "Y+4.5"

yFormat.format(6); // returns Y+6

yFormat.getResultingValue(3.1234); // returns 3.123

var toolFormat = createFormat({prefix:"T", decimals:0, minDigitsLeft:2});

toolFormat.format(7); // returns "T07"

var aFormat = createFormat({type:FORMAT_REAL, decimals:3, forceSign:true, scale:DEG});

aFormat.format(Math.PI); // returns "+180."

var peckFormat = createFormat({type:FORMAT_LZS, decimals:4, minDigitsLeft:0});

peckFormat.format(1.23); // returns Q12300

peckFormat.format(0.001); // returns Q10
Example createFormat Commands

4.1.8 Deprecated Format Specifiers

In support of existing post processors, the following legacy format definition is still supported. The

syntax of the createFormat statement remains the same, but the specifiers are different from those

described in the previous section as shown in the following table.

Specifier Value

decimals Defines the number digits to the right of the decimal point to output. The

default is 6.

forceDecimal When set to true the decimal point will always be included with the

formatted number. false will remove the decimal point for integer values.

forceSign When set to true will force the output of a plus (+) sign on positive

numbers. The default is false.

inherit Inherits all properties from an existing FormatNumber.

mk:@MSITStore:C:/Users/Public/Documents/Autodesk/Inventor%20HSM/Posts/post.chm::/classMath.html

Entry Functions 4-90

 CAM Post Processor Guide 8/8/23

Specifier Value

offset Defines a number to add to the value prior to formatting it for output. The

default is 0.

prefix Defines the prefix of the output value as a text string. The prefix should

only be defined if this is a standalone format and is not used for multiple

output definitions. The default is "".

scale Defines a scale factor to multiply the value by prior to formatting it for

output. scale can be a number or a number designator, such as DEG. The

default is 1.

separator Defines the character to use as the decimal point. The default is '.'.

suffix Defines the suffix of the output value as a text string. The suffix should

only be defined if this is a standalone format and is not used for multiple

output definitions. The default is "".

trim When set to true the trailing zeros will be trimmed from the right of the

decimal point. The default is true.

trimLeadZero When set to true will trim the lead zero from a floating-point number if the

number is fractional, e.g. .123 instead of 0.123. The default is false.

width Specifies the minimum width of the output string. If the formatted value's

width is less than the width value, then the start of the number will either be

filled with spaces or zeros depending on the value of zeropad. If the format

is used to output a code to the NC file be sure to set zeropad to true,

otherwise the prefix and value could be separated by spaces. The width of

the output string includes the decimal point when it is included in the

number, but not the sign of the number. The default is 0.

zeropad When set to true will fill the beginning of the output string with zeros to

match the specified width. If width is not specified or the output string is

longer than width, then no zeros will be added. The default is false.
Deprecated createFormat Specifiers

4.1.9 Output Variable Definitions

The format object is used to format values but has no connection to the output of the variable, except for

formatting a text string that could be output. It does not know what the last output variable is, which is

important when you do not want to output a code if the value has not changed from its previous output

value.

The createOutputVariable function creates OutputVariable objects that are used to control the output of

a code. The codes can be output only when they are changed, as an absolute value, as an incremental

value, or as a directional value where the sign of the number determines a movement direction.

You can use the FormatNumber object, created from the createFormat function, for codes/registers that

should be output whenever they are encountered in the post, just be sure to add the prefix to the

definition.

createOutputVariable({specifier:value, specifier:value, …}, format);

Entry Functions 4-91

 CAM Post Processor Guide 8/8/23

Output Variable Syntax

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (:)

and then by a value. Multiple specifiers are separated by commas. A FormatNumber object is provided

as the second parameter. Supported specifiers are listed in the following table.

Specifier Value

control Determines when a formatted variable will be output. CONTROL_CHANGED

will format the number when it has changed from the previously formatted

value, CONTROL_FORCE will format the number each time, and

CONTROL_NONZERO will format the number only when it is not equal to

zero. If the number is not formatted, then a blank string will be returned.

current Defines the initial value to store in the output variable.

cyclicLimit Specifies the absolute range limit for the formatted value, for example it could

be 360 for a rotary axis.

cyclicSign Specifies the sign for a cyclic value and can be -1 (formatted numbers will

always be negative), 0 (formatted numbers can be both positive and negative),

or 1 (formatted numbers will always be positive).

onchange Defines the method to be invoked when the formatting of the value results in

output.

prefix Text string that prepends to the prefix defined in the format.

suffix Text string that appends to the suffix defined in the format.

tolerance Defines a tolerance used to determine when the number should be formatted. A

value must differ from the previous value by greater than this tolerance to be

output.

type Defines the output type of the variable. Can be one of the following.

• TYPE_ABSOLUTE – The number will maintain its value when

formatted.

• TYPE_INCREMENTAL – The formatted number will be an

incremental value from the previously formatted value.

• TYPE_DIRECTIONAL – The formatted number will be negative if the

value is less than the previously formatted value or will be positive if

the value is greater than the previously formatted value. This type is

usually used in conjunction with the cyclicLimit and cyclicSign

specifiers for rotary axes that are output on a rotary scale.

The default is TYPE_ABSOLUTE..
Output Variable Specifiers

The onchange property defines a function that is called whenever the formatting of the variable results

in an output text string, such as when the value changes or is forced out. The following example will

force out the gMotionModal code whenever the plane code is changed.

var gPlaneModal = createOutputVariable({onchange:function () {gMotionModal.reset();}}, gFormat);

onchange Usage

Entry Functions 4-92

 CAM Post Processor Guide 8/8/23

Once an output variable is created, it can be used to create a formatted text string for output. The

following table describes the functions assigned to the output variable objects. The functions are

properties of the defined OutputVariable object.

Function Description

disable() Disables this variable from being output. Will cause the return value

from the format function to always be a blank string ("").

enable() Enables this variable for output. This is the default condition when the

variable is created.

format(value) Returns the formatted text string representation of the number. A blank

string will be returned when the value is the same as the stored value

when control is set to CONTROL_CHANGED, or generates a value of

0 when control is set to CONTROL_NONZERO.

getControl() Returns the control setting of the output variable.

getCurrent() Returns the value currently stored in this variable.

getCyclicLimit() Returns the absolute cyclic limit (rollover) of the output variable.

getCyclicSign() Returns the cyclic sign setting of the output variable.

getFormat() Returns the FormatNumber associated with this output variable.

getPrefix() Returns the prefix of the output variable.

getResultingValue(value) Returns the real value that the formatted output text string represents.

getSuffix() Returns the suffix of the output variable.

getTolerance() Returns the output tolerance of the output variable.

getType() Returns the output type of the variable.

get---() All get functions supported by the FormatNumber object can be called

from an OutputVariable object. These calls return the values stored in

the FormatNumber, for example getDecimals(), getScale(), etc. The

only get functions not supported are those with the same names as

OutputVariable functions, such as getPrefix().

isEnabled() Returns true if this variable is enabled for output.

setControl(control) Sets the control type, CONTROL_CHANGED, CONTROL_FORCE, or

CONTROL_NONZERO.

setCurrent(value) Sets the current value.

setCyclicLimit(value) Defines the rollover value (cyclic limit).

setCyclicSign(value) Defines the cyclic sign, -1 (formatted numbers will always be negative),

0 (formatted numbers can be both positive and negative), or 1

(formatted numbers will always be positive).

setFormat(format) Changes the FormatNumber object associated with this output variable.

setPrefix(prefix-text) Overrides the prefix of the variable.

setSuffix(suffix-text) Overrides the suffix of the variable.

setTolerance(value) Defines the output tolerance of the variable.

setType(type) Sets the formatting type, TYPE_ABSOLUTE,

TYPE_INCREMENTAL, or CONTROL_DIRECTIONAL.

set---() All set functions supported by the FormatNumber object can be called

from an OutputVariable object. These calls override the properties

Entry Functions 4-93

 CAM Post Processor Guide 8/8/23

Function Description

stored in the FormatNumber associated with this OutputVariable, for

example setDecimals(3), setScale(2), etc. The only set functions not

supported are those with the same names as OutputVariable functions,

such as setPrefix().

When a FormatNumber is assigned to an OutputVariable then a copy of

the FormatNumber is placed in the OutputVariable, so setting a

FormatNumber property from an OutputVariable does not modify the

original FormatNumber used when creating the OutputVariable.

reset() Forces the output of the formatted text string on the next call to format,

overriding the rules for not outputting a value.
OutputVariable Functions

var xyzFormat = createFormat({decimals:3, type:FORMAT_REAL});

var xOutput = createVariable({prefix:"X"}, xyzFormat);

xOutput.format(4.5); // returns "X4.5"

xOutput.format(4.5); // returns "" (4.5 is currently stored in the xOutput variable)

xOutput.reset(); // force xOuput on next formatting

xOutput.format(4.5); // returns "X4.5"

xOutput.disable(); // disable xOutput formatting

xOutput.format(1.2); // returns "" since it is disabled

var gFormat = createFormat({prefix:"G", decimals:0, minDigitsLeft:2});

var gMotionModal = createOutputVariable({control:CONTROL_FORCE}, gFormat);

gMotionModal.format(0); // returns G00

gMotionModal.format(0); // returns G00 (CONTROL_FORCE is set)

gMotionModal.setPrefix("[");

gMotionModal.setSuffix("]");

gMotionModal.format(1); // returns "[G01]"

var iOutput = createOutputVariable({prefix:"I", control:CONTROL_NONZERO}, xyzFormat);

iOutput.format(.001); // returns "I0.001"

iOutput.format(.0001); // returns ""

var zOutput = createOutputVariable({prefix:"Z", type:TYPE_INCREMENTAL, current:.5},

 xyzFormat);

zOutput.format(1.2); // returns "Z0.7"

zOutput.format(1.5); // returns "Z0.3"

zOutput.format(1.5); // returns ""

zOutput.format(0); // returns "Z-1.5"

var aFormat = createFormat({decimals:3, scale:DEG});

var aOutput = createOutputVariable({prefix:"A", type:TYPE_DIRECTIONAL, cyclicLimit:360,

 cyclicSign:1}, aFormat);

aOutput.format(Math.PI / 2); // returns "A90"

Entry Functions 4-94

 CAM Post Processor Guide 8/8/23

aOutput.format(Math.PI); // returns "A180"

aOutput.format(Math.PI / 2); // returns "A-90"

aOutput.format(0); // returns "A-360"
Example OutputVariable Commands

4.1.10 Deprecated Output Variable Definitions

In support of existing post processors, the following legacy output variable definition are still supported.

createVariable({specifier:value, specifier:value, …}, format);

createModal({specifier:value, specifier:value, …}, format);

createReferenceVariable({specifier:value, specifier:value, …}, format);

createIncrementalVariable({specifier:value, specifier:value, …}, format);
Deprecated Output Variables Syntax

The createVariable, createModal, createReferenceVariable, and createIncrementalVariable functions

create output objects that are used to control the output of a code. The createVariable and createModal

objects are used to output codes/registers only when they change from the previous output value, the

createReferenceVariable is used to output values when they are different from a specified reference

value, and the createIncrementalVariable is used for the output of incremental values, i.e. the output

value will be an incremental value based on the previous value and the input value.

The following table lists the specifiers supported by the deprecated output variable definitions. Some of

the specifiers are common to all three objects and some to a particular object.

Specifier Object Value

prefix (all) Text string that overrides the prefix defined in format.

force (all) When set to true forces the formatting of the value even if it

does not change from the previous value. The default is

false.

onchange createVariable

createModal

Defines the method to be invoked when the formatting of

the value results in output.

suffix createModal Text string that overrides the suffix defined in format.

first createIncrementalVariable Defines the initial value of an incremental variable. You

will also have to call the variable.format(first) function

after creating the IncrementalVariable to properly store the

initial value.
Deprecated Output Variable Specifiers

The following table describes the functions assigned to the deprecated output variable objects. The

functions are properties of the Variable object(s) as listed.

Function Object Description

disable() Variable

ReferenceVariable

IncrementalVariable

Disables this variable from being

output. Will cause the return value

Entry Functions 4-95

 CAM Post Processor Guide 8/8/23

Function Object Description

 from the format function to always be a

blank string ("").

enable() Variable

Reference Variable

IncrementalVariable

Enables this variable for output. This is

the default condition when the variable

is created.

format(value [,ref]) (all) Returns the formatted text string

representation of the number. Can

return a blank string if the value is the

same as the stored value in the Variable

and Modal objects, the same as the

reference value in the

ReferenceVariable object, or generates

a value of 0 in the IncrementalVariable

object. The call to format for a

ReferenceVariable object must contain

the second ref parameter, which

determines if the value should be

formatted for output.

getCurrent() Variable

Modal

IncrementalVariable

Returns the value currently stored in

this variable.

isEnabled() Variable

ReferenceVariable

IncrementalVariable

Returns true if this variable is enabled

for output

reset() Variable

Modal

IncrementalVariable

Forces the output of the formatted text

string on the next call to format,

overriding the rules for not outputting a

value.

setPrefix(prefix-text) (all) Overrides the prefix of the variable.

setSuffix(suffix-text) Modal Overrides the suffix of the variable.
Deprecated Output Variable Functions

4.1.11 Modal Groups

Modal groups are similar to Modal variables (createModal), but are used to define codes that can be

grouped together. For example, all G-codes that use the same formatting and output rules can be placed

in a modal group. Modal groups can be considered part of the Output Variable definitions but behave in

an expanded manner and limit control over the individual codes in a group element as can be done using

a modal variable.

createModalGroup({specifier:value, specifier:value, …}, groups, format);
createModalGroup Syntax

Entry Functions 4-96

 CAM Post Processor Guide 8/8/23

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (:)

and then by a value. Multiple specifiers are separated by commas. A format object is provided as the

third parameter. The specifiers are listed in the following table.

Specifier Value

force When set to true forces the formatting of the value even if it does not change

from the previous value. The default is false.

strict When set to true requires that any code output using this modal must be present

in one of the defined groups. An error will be output if any code is output that

is not in one of the groups. Specifying false allows for codes not belonging to a

group to be output. Codes that do not belong to a group will always be output,

meaning they belong to a non-modal group.
Output Variable Properties

The code groups are defined as arrays of codes within an array. Each individual group is treated similar

to as if it was defined as a separate Modal variable.

var mClampModal = createModalGroup(

 {strict:false},

 [

 [10, 11], // 4th axis clamp / unclamp

 [12, 13] // 5th axis clamp / unclamp

],

 mFormat

);

var gCodeGroup = createModalGroup(

 {strict:true, force:false},

 [

 [0, 1, 2, 3], // group 0 – motion codes

 [17, 18, 19], // group 1 – plane selection codes

 [80, 81, 82, 83, 84, 85, 86, 87, 88, 89], // group 2 – cycle codes

],

 gFormat

);
Sample createModalGroup Commands

Once a modal group is created, it can be used to create a formatted text string for output. The following

table describes the functions assigned to the modal group object. Group numbers are based on 0, so the

first group is referenced as 0, the second as 1, etc. The functions are properties of the defined

ModalGroup object and are prefixed by the name of the group, for example mClampModal.disable().

Function Description

addCode(group, code) Adds the specified code to the given group.

createGroup Adds a group to the end of the groups.

Entry Functions 4-97

 CAM Post Processor Guide 8/8/23

Function Description

disable () Disables all defined groups in this modal from being output.

Will cause the return value from the format function to always

be a blank string ("").

enable() Enables all defined groups in this modal for output. This is the

default condition when the modal is created.

format(code) Returns the formatted text string representation of the number.

Can return a blank string if the value is the same as the stored

value in the ModalGroup object. If the code does not belong to

a defined group, then it will always be output if the

ModalGroup was defined with strict:false, or an error will be

output if strict mode is enabled.

getActiveCode (group) Returns the value currently stored in the specified group.

getGroup(code) Returns the group id for the specified code. If the code does not

belong to a group returns a very large number.

getNumberOfCodes() Returns the combined number of codes in all groups.

getNumberOfCodesInGroup(group) Returns the number of codes in the specified group.

getNumberOfGroups() Returns the number of defined groups.

hasActiveCode(group) Returns true if the specified group has a valid code. Returns

false if a code has not been formatted in this group or if the

group has been reset.

inSameGroup(code1, code2) Returns true if the two codes are in the same group.

isActiveCode(code) Returns true if the code is active within its group.

isCodeDefined(code) Returns true if the code is defined in any of the groups.

isEnabled() Returns true if this modal group is enabled for output.

isGroup(group) Returns true if the specified group id is defined.

makeActiveCode(code) Marks the specified code as the active code within its group.

removeCode(code) Removes the specified code from its group.

reset () Resets all groups and forces the output of the formatted text

string on the next call to format, overriding the rules for not

outputting a value.

resetGroup(group) Resets the specified group and forces the output of the

formatted text string on the next call to format, overriding the

rules for not outputting a value.

setAutoReset(flag) Sets the auto-reset mode. When set to true, all groups are reset

when a code that is not defined in any group is output. Strict

mode must be disabled to output an undefined code.

setForce(force) Forces the output of all group codes when enabled, even if the

code value is the same as the active code value.

setFormatNumber(format) Overrides the format variable assigned to the modal group.

setPrefix(prefix-text) Defines the prefix of all groups. If a prefix is defined in the

format assigned to the modal group, then the format prefix will

be appended to this prefix.

Entry Functions 4-98

 CAM Post Processor Guide 8/8/23

Function Description

setSuffix(suffix-text) Defines the suffix of all groups. If a suffix is defined in the

format assigned to the modal group, then the modal group

suffix will be appended to the format suffix.
ModalGroup Functions

The following sample code shows how a single Modal Group can be used to define the clamping codes

for the rotary axes rather than creating two separate Modal variables to store the 4 th and 5th axes

clamping codes.

 case COMMAND_LOCK_MULTI_AXIS:

 if (machineConfiguration.isMultiAxisConfiguration() &&

 (machineConfiguration.getNumberOfAxes() >= 4)) {

 writeBlock(mClampModal.format(10)); // unlock 4th-axis motion

 if (machineConfiguration.getNumberOfAxes() == 5) {

 writeBlock(mClampModal.format(12)); // unlock 5th-axis motion

 }

 }

 return;

 case COMMAND_UNLOCK_MULTI_AXIS:

 if (machineConfiguration.isMultiAxisConfiguration() &&

 (machineConfiguration.getNumberOfAxes() >= 4)) {

 writeBlock(mClampModal.format(11)); // unlock 4th-axis motion

 if (machineConfiguration.getNumberOfAxes() == 5) {

 writeBlock(mClampModal.format(13)); // unlock 5th-axis motion

 }

 }
Sample Modal Group Code

4.1.12 Fixed Settings

The fixed settings area of the global section defines settings in the post processor that enable features

that may change from machine to machine, but are not common enough to place in the Property Table.

These settings are usually not modified by the post processor, but can be modified to enable features on

your machine that are disabled in a stock post processor or vice versa.

// fixed settings

var firstFeedParameter = 500;

var useMultiAxisFeatures = false;

var forceMultiAxisIndexing = false; // force multi-axis indexing for 3D programs

var maximumLineLength = 80; // the maximum number of characters allowed in a line

var minimumCyclePoints = 5; // min number of points in cycle operation to consider for subprogram

var WARNING_WORK_OFFSET = 0;

var ANGLE_PROBE_NOT_SUPPORTED = 0;

Entry Functions 4-99

 CAM Post Processor Guide 8/8/23

var ANGLE_PROBE_USE_ROTATION = 1;

var ANGLE_PROBE_USE_CAXIS = 2;
Sample Fixed Settings Code

4.1.13 Collected State

The collected state area of the global section contains global variables that will be changed during the

execution of the post processor and are either referenced in multiple functions or need to maintain their

values between calls to the same function.

// collected state

var sequenceNumber;

var currentWorkOffset;
Sample Collected State Code

4.2 onOpen

function onOpen() {

The onOpen function is called at start of each CAM operation and can be used to define settings used in

the post processor and output the startup blocks.

1. Define settings based on properties

2. Define the multi-axis machine configuration

3. Output program name and header

4. Perform checks for duplicate tool numbers and work offsets

5. Output initial startup codes

4.2.1 Define Settings Based on Post Properties

The fixed settings section at the top of the post processor contain settings that are fixed and will not be

changed during the processing of the intermediate file. Settings and variables that are dependant on the

properties defined in the Property Table are defined in the onOpen function, since this is the function

called when the post processor first starts.

Some of the variables that may be defined here are the maximum circular sweep, starting sequence

number, formats, properties that can be changed using a Manual NC command, etc.

 if (getProperty("useRadius")) {

 maximumCircularSweep = toRad(90); // avoid potential center calculation errors for CNC

 }

 // define sequence number output

 if (getProperty("sequenceNumberOperation")) {

Entry Functions 4-100

 CAM Post Processor Guide 8/8/23

 setProperty("showSequenceNumbers", false);

 }

 sequenceNumber = getProperty("sequenceNumberStart");

 // separate codes with a space in output block

 if (!getProperty("separateWordsWithSpace")) {

 setWordSeparator("");

 }

 // Manual NC command can change the transfer type

 transferType = parseToggle(getProperty("transferType"), "PHASE", "SPEED");
Defining Dynamic Variables in the onOpen Function

The majority of machines on the market today accept input in both inches and millimeters. It is possible

that your machine must be programmed in only one unit. If this is the case, then you can define the unit

variable in the onOpen function to force the output of all relevant information in inches or millimeters.

 unit = MM; // set output units to millimeters, use IN for inches
Support for Only One Input Unit

4.2.2 Define the Multi-Axis Configuration

The onOpen function contains calls to the functions that will optionally create a hardcode machine

configuration and activate the machine configuration, whether it be hardcoded or defined in the CAM

system. Following is an example of this code. For a complete description of defining a multi-axis

configuration please see the Multi-Axis Post Processors chapter.

 // define and enable machine configuration

 receivedMachineConfiguration = (typeof machineConfiguration.isReceived == "function") ?

machineConfiguration.isReceived() :

 ((machineConfiguration.getDescription() != "") ||

machineConfiguration.isMultiAxisConfiguration());

 if (typeof defineMachine == "function") {

 defineMachine(); // hardcoded machine configuration

 }

 activateMachine(); // enable the machine optimizations and settings
Defining the Machine Configuration

4.2.3 Output Program Name and Header

The program name and program comment are defined in the Post Process tab of the CAM setup in

HSM. The programNameIsInteger variable defined at the top of the program determines if the program

name needs to be a number or can be a text string.

Entry Functions 4-101

 CAM Post Processor Guide 8/8/23

Defining the Program Name and Comment

writeln("%"); // output start of NC file

if (programName) {

 var programId;

 try {

 programId = getAsInt(programName);

 } catch(e) {

 error(localize("Program name must be a number."));

 return;

 }

 if (!((programId >= 1) && (programId <= 99999))) {

 error(localize("Program number is out of range."));

 return;

 }

 writeln(

 "O" + oFormat.format(programId) +

 conditional(programComment, " " + formatComment(programComment.substr(0,

 maximumLineLength - 2 - ("O" + oFormat.format(programId)).length - 1)))

);

 lastSubprogram = programId;

 } else {

 error(localize("Program name has not been specified."));

 return;

 }
Output the Program Name as an Integer and Program Comment

Some machines don't use a program number and accept the program name as a comment.

 writeln("%"); // output start of NC file

 if (programName) {

 writeComment(programName);

 }

Entry Functions 4-102

 CAM Post Processor Guide 8/8/23

 if (programComment) {

 writeComment(programComment);

 }
Output the Program Name as a Comment

The program header can consist of the output filename, version numbers, the run date and time, the

description of the machine, the list of tools used in the program, and setup notes.

 // Output current run information

 if (hasParameter("generated-by") && getParameter("generated-by")) {

 writeComment(" " + localize("CAM") + ": " + getParameter("generated-by"));

 }

 if (hasParameter("document-path") && getParameter("document-path")) {

 writeComment(" " + localize("Document") + ": " + getParameter("document-path"));

 }

 var eos = longDescription.indexOf(".");

 writeComment(localize(" Post Processor: ") + ((eos == -1) ?

 longDescription : longDescription.substr(0, eos + 1)));

 if ((typeof getHeaderVersion == "function") && getHeaderVersion()) {

 writeComment(" " + localize("Post version") + ": " + getHeaderVersion());

 }

 if ((typeof getHeaderDate == "function") && getHeaderDate()) {

 writeComment(" " + localize("Post modified") + ": " + getHeaderDate());

 }

 var d = new Date(); // output current date and time

 writeComment(" " + localize("Date") + ": " + d.toLocaleDateString() + " " +

 d.toLocaleTimeString());
Output the Description of the Current Run

 // dump machine configuration

 var vendor = machineConfiguration.getVendor();

 var model = machineConfiguration.getModel();

 var description = machineConfiguration.getDescription();

 if (getProperty("writeMachine") && (vendor || model || description)) {

 writeComment(localize("Machine"));

 if (vendor) {

 writeComment(" " + localize("vendor") + ": " + vendor);

 }

 if (model) {

 writeComment(" " + localize("model") + ": " + model);

 }

 if (description) {

 writeComment(" " + localize("description") + ": " + description);

 }

 }

Entry Functions 4-103

 CAM Post Processor Guide 8/8/23

Output Machine Information

In the above code sample, the machine information is retrieved from the Machine Configuration, but a

machine configuration file is not always available to the post processor, so it is possible to hard code the

machine description.

 machineConfiguration.setVendor("Doosan");

 machineConfiguration.setModel("Lynx");

 machineConfiguration.setDescription(description);
Defining the Machine Information

// dump tool information

 if (getProperty("writeTools")) {

 var zRanges = {};

 if (is3D()) {

 var numberOfSections = getNumberOfSections();

 for (var i = 0; i < numberOfSections; ++i) {

 var section = getSection(i);

 var zRange = section.getGlobalZRange();

 var tool = section.getTool();

 if (zRanges[tool.number]) {

 zRanges[tool.number].expandToRange(zRange);

 } else {

 zRanges[tool.number] = zRange;

 }

 }

 }

 var tools = getToolTable();

 if (tools.getNumberOfTools() > 0) {

 for (var i = 0; i < tools.getNumberOfTools(); ++i) {

 var tool = tools.getTool(i);

 var comment = "T" + toolFormat.format(tool.number) + " " +

 "D=" + xyzFormat.format(tool.diameter) + " " +

 localize("CR") + "=" + xyzFormat.format(tool.cornerRadius);

 if ((tool.taperAngle > 0) && (tool.taperAngle < Math.PI)) {

 comment += " " + localize("TAPER") + "=" + taperFormat.format(tool.taperAngle) +

 localize("deg");

 }

 if (zRanges[tool.number]) {

 comment += " - " + localize("ZMIN") + "=" +

 xyzFormat.format(zRanges[tool.number].getMinimum());

 }

 comment += " - " + getToolTypeName(tool.type);

 writeComment(comment);

 }

Entry Functions 4-104

 CAM Post Processor Guide 8/8/23

 }

 }
Output List of Tools Used

The following code is used to output the notes from the first setup. The property showNotes is defined

in the properties, see the Operation Comments and Notes section to see how to define this property.

 // output setup notes

 if (getProperty("showNotes")) {

 writeSetupNotes();

 }
Output Notes from First Setup

If your post needs to output the notes from multiple setups, then additional code outside of onOpen

needs to be added.

First, define the firstNote property in the collected state section of the post.

// collected state

…

var firstNote; // handles output of notes from multiple setups
Define the firstNote Global Variable

In the onParameter function define the logic to process the job-notes parameter.

function onParameter(name, value) {

 switch (name) {

 …

 case "job-notes":

 if (!firstNote) {

 writeNotes(value, true);

 }

 firstNote = false;

 break;

 }

}
Handle the Setup Notes in onParameter

And finally, implement the writeText function. It can be placed in front of the onParameter function.

This function can also be used to output the text from the Pass through Manual NC command.

// writes out multi-line text either as-is or as a comment

function writeNotes(text, asComment) {

 if (text) {

 var lines = String(text).split("\n");

 var r2 = new RegExp("[\\s]+$", "g");

Entry Functions 4-105

 CAM Post Processor Guide 8/8/23

 for (line in lines) {

 var comment = lines[line].replace(r2, "");

 if (comment) {

 if (asComment) {

 onComment(comment);

 } else {

 writeln(comment);

 }

 }

 }

 }

}
The writeNotesFunction is used to Output Multi-line Text

4.2.4 Performing General Checks

Basic checks for using duplicate tool numbers, undefined work offsets, and other requirements can be

done in the onOpen function since all operations can be accessed at any time during post processing.

 if (false) { // set to true to check for duplicate tool numbers w/different cutter geometry

 // check for duplicate tool number

 for (var i = 0; i < getNumberOfSections(); ++i) {

 var sectioni = getSection(i);

 var tooli = sectioni.getTool();

 for (var j = i + 1; j < getNumberOfSections(); ++j) {

 var sectionj = getSection(j);

 var toolj = sectionj.getTool();

 if (tooli.number == toolj.number) {

 if (xyzFormat.areDifferent(tooli.diameter, toolj.diameter) ||

 xyzFormat.areDifferent(tooli.cornerRadius, toolj.cornerRadius) ||

 abcFormat.areDifferent(tooli.taperAngle, toolj.taperAngle) ||

 (tooli.numberOfFlutes != toolj.numberOfFlutes)) {

 error(

 subst(

 localize("Using the same tool number for different cutter geometry for operation '%1' and

'%2'."),

 sectioni.hasParameter("operation-comment") ?

 sectioni.getParameter("operation-comment") : ("#" + (i + 1)),

 sectionj.hasParameter("operation-comment") ?

 sectionj.getParameter("operation-comment") : ("#" + (j + 1))

)

);

 return;

 }

 }

 }

Entry Functions 4-106

 CAM Post Processor Guide 8/8/23

 }

 }
Check for Duplicate Tool Numbers using Different Cutter Geometry

 // don't allow WCS 0 unless it is the only WCS used in the program

 if ((getNumberOfSections() > 0) && (getSection(0).workOffset == 0)) {

 for (var i = 0; i < getNumberOfSections(); ++i) {

 if (getSection(i).workOffset > 0) {

 error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));

 return;

 }

 }

 }
Check for Work Offset 0 when Multiple Work Offsets are Used in Program

4.2.5 Output Initial Startup Codes

Codes that set the machine to its default condition are usually output at the beginning of the NC file.

These codes could include the units setting, absolute mode, the feedrate mode, etc.

 // output default codes

 writeBlock(gAbsIncModal.format(90), gFeedModeModal.format(94), gPlaneModal.format(17),

 gFormat.format(49), gFormat.format(40), gFormat.format(80));

 // output units code

 switch (unit) {

 case IN:

 writeBlock(gUnitModal.format(20));

 break;

 case MM:

 writeBlock(gUnitModal.format(21));

 break;

 }
Output Initial Startup Codes

4.3 onSection

function onSection() {

The onSection function is called at start of each CAM operation and controls the output of the following

blocks.

1. End of previous section

2. Operation comments and notes

3. Tool change

Entry Functions 4-107

 CAM Post Processor Guide 8/8/23

4. Work plane

5. Initial position

onSection is Called for Each Operation

The first part of onSection determines if there is a change in the tool being used and if the Work

Coordinate System offset or Work Plane is different from the previous section. These settings determine

the output required between operations.

 var insertToolCall = isToolChangeNeeded("number");

 var newWorkOffset = isFirstSection() ||

 (getPreviousSection().workOffset != currentSection.workOffset); // work offset changes

 var newWorkPlane = isNewWorkPlane();
 Tool Change, Work Coordinate Sysetm Offset, and Work Plane Settings

4.3.1 Ending the Previous Operation

You would expect that the NC blocks output at the end of an operation to be output in the onSectionEnd

function, but in most posts, this is handled in onSection and for the final operation, in the onClose

function. This code will typically stop the spindle, turn off the coolant, and retract the tool.

 if (insertToolCall || newWorkOffset || newWorkPlane) {

 // stop spindle before retract during tool change

 if (insertToolCall && !isFirstSection()) {

 onCommand(COMMAND_STOP_SPINDLE);

 }

 // retract to safe plane

 writeRetract(Z);

Entry Functions 4-108

 CAM Post Processor Guide 8/8/23

 }

…

…

 onCommand(COMMAND_COOLANT_OFF);

 if (!isFirstSection() && getProperty("optionalStop")) {

 onCommand(COMMAND_OPTIONAL_STOP);

 }
Ending the Previous Operation

The code to retract the tool can vary from post to post, depending on the controller model and the

machine configuration. It can output an absolute move to the machine home position, for example using

G53, or move to a clearance plane relevant to the current work offset, for example G00 Z5.0.

The onSectionEnd section has an example of ending the operation when not done in the onSection

function.

4.3.2 Operation Comments and Notes

The operation comment is output in the onSection function and optionally notes that the user attached to

the operation.

Create Operation Comment

 var comment = getParameter("operation-comment", “”);

 if (comment) {

 writeComment(comment);

 }
Output Operation Comment

Entry Functions 4-109

 CAM Post Processor Guide 8/8/23

Right Click to Show Menu to Create Operation Notes

The output of the operation notes is normally handled by the post processor property showNotes.

// user-defined properties

properties = {

…

 showNotes: {

 title : "Show notes",

 description: "Writes setup and operation notes as comments in the output code.",

 type : "boolean",

 value : false,

 scope : "post"

 },

…

}
Define the showNotes Property

 // output section notes

 if (getProperty("showNotes")) {

 writeSectionNotes();

 }

Entry Functions 4-110

 CAM Post Processor Guide 8/8/23

Output Operation Notes

4.3.3 Tool Change

Tool change blocks are output whenever a new tool is loaded in the spindle or the tool change is forced,

either by a Manual NC Force tool change command or internally, for example when a safe start is

forced at each operation. The tool change blocks usually contain the following information.

1. Tool number and tool change code

2. Tool comment

3. Comment containing lower Z-limit for tool (optional)

4. Selection of next tool

5. Spindle speed and direction

6. Coolant codes

Tool Parameters Used in Tool Change

The Length Offset value is usually output with the Initial Position as described further in this chapter.

The Diameter Offset value is output with a motion block in onLinear. All other tool parameters are

output in the tool change code.

 if (insertToolCall) {

…

 if (tool.number > numberOfToolSlots) {

 warning(localize("Tool number exceeds maximum value."));

 }

 writeBlock("T" + toolFormat.format(tool.number), mFormat.format(6));

 if (tool.comment) {

 writeComment(tool.comment);

Entry Functions 4-111

 CAM Post Processor Guide 8/8/23

 }

…
Output Tool Change and Tool Comment

You will have to change the setting of showToolZMin to true if you want the lower Z-limit comment

output at a tool change.

 var showToolZMin = true;

 if (showToolZMin) {

 if (is3D()) {

 var zRange = toolZRange();

 writeComment(localize("ZMIN") + "=" + zRange.getMinimum());

 }

 }
Output Lower Limit of Z for This Operation

The selection of the next tool is optional and is controlled by the post processor property preloadTool.

// user-defined properties

properties = {

…

 preloadTool: {

 title : "Preload tool",

 description: "Preloads the next tool at a tool change (if any).",

 type : "boolean",

 value : true,

 scope : "post"

 }

}
Define the preloadTool Property

The first tool will be loaded on the last operation of the program.

// preload next tool

if (getProperty("preloadTool")) {

 var nextTool = getNextTool(“number”);

 if (nextTool) {

 writeBlock("T" + toolFormat.format(nextTool.number));

 } else {

 // preload first tool

 var firstToolNumber = getFirstTool().number;

 if (tool.number != firstToolNumber) {

 writeBlock("T" + toolFormat.format(firstToolNumber));

 }

 }

 }

Entry Functions 4-112

 CAM Post Processor Guide 8/8/23

Preload the Next Tool

The spindle codes will be output with a tool change and if the spindle speed changes.

if (insertToolCall ||

 isFirstSection() ||

 (rpmFormat.areDifferent(tool.spindleRPM, sOutput.getCurrent())) ||

 (tool.clockwise != getPreviousSection().getTool().clockwise)) {

 if (tool.spindleRPM < 1) {

 error(localize("Spindle speed out of range."));

 return;

 }

 if (tool.spindleRPM > 99999) {

 warning(localize("Spindle speed exceeds maximum value."));

 }

 writeBlock(

 sOutput.format(tool.spindleRPM), mFormat.format(tool.clockwise ? 3 : 4)

);

 }
Output Spindle Codes

You will find different methods of outputting the coolant codes in the various posts. The latest method

uses a table to define the coolant on and off codes. The table is defined just after the properties table at

the top of the post processor. You can define a single code for each coolant mode or multiple codes

using an array. When adding or changing the coolant codes supported by your machine, this is the only

area of the code that needs to be changed.

var singleLineCoolant = false; // specifies to output multiple coolant codes in one line rather than in

separate lines

// samples:

// {id: COOLANT_THROUGH_TOOL, on: 88, off: 89}

// {id: COOLANT_THROUGH_TOOL, on: [8, 88], off: [9, 89]}

var coolants = [

 {id: COOLANT_FLOOD, on: 8},

 {id: COOLANT_MIST},

 {id: COOLANT_THROUGH_TOOL, on: 88, off: 89},

 {id: COOLANT_AIR},

 {id: COOLANT_AIR_THROUGH_TOOL},

 {id: COOLANT_SUCTION},

 {id: COOLANT_FLOOD_MIST},

 {id: COOLANT_FLOOD_THROUGH_TOOL, on: [8, 88], off: [9, 89]},

 {id: COOLANT_OFF, off: 9}

];
Coolant Definition Table

The coolant code is output using the following code in onSection.

Entry Functions 4-113

 CAM Post Processor Guide 8/8/23

 // set coolant after we have positioned at Z

 setCoolant(tool.coolant);
Output of Coolant Codes

The setCoolant function will output each coolant code in separate blocks. It does this by calling the

getCoolantCodes function to obtain the coolant code(s) and using writeBlock to output each individual

coolant code. Both of these functions are generic in nature and should not have to be modified.

It may be that you want to output the coolant codes(s) in a block with other codes, such as the initial

position or the spindle speed. In this case you can call getCoolantCodes directly in the onSection

function and add the output of the coolant codes to the appropriate block. The following example will

output the coolant codes with the initial position of the operation.

 var coolantCodes = getCoolantCodes(tool.coolant);

 var initialPosition = getFramePosition(currentSection.getInitialPosition());

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0),

 xOutput.format(initialPosition.x),

 yOutput.format(initialPosition.y),

 coolantCodes,

);
getCoolantCodes Function Supports Multiple Codes for Single Coolant Mode

4.3.4 Work Coordinate System Offsets

The active Work Coordinate System (WCS) offset is defined in the CAM Setup dialog. You can

override the WCS defined in the setup in either a folder or pattern. The wcsDefinitions variable defines

the supported WCS codes that can be output and it is recommended that you include this variable

definition in your post. All examples in this section assume that wcsDefinitions is defined.

If a CAM Machine Configuration is defined the WCS can be selected using the number as expected by

the machine control. When a CAM Machine Configuration is not defined, then a simple value will be

displayed.

Entry Functions 4-114

 CAM Post Processor Guide 8/8/23

 WCS Offset with a Machine Configuration WCS Offset without a Machine Configuration

WCS codes are output when a new tool is used for the operation or when the WCS offset number used is

changed. WCS offsets are typically controlled using the G54 to G59 codes and possibly an extended

syntax for handling work offsets past 6.

wcsDefinitions is defined just after the coolants table at the top of the post processor.

var wcsDefinitions = {

 useZeroOffset: false, // set to 'true' to allow for workoffset 0, 'false' treats 0 as 1

 wcs : [

 {name:"Standard", format:"G", range:[54, 59]}, // standard WCS, output as G54-G59

 {name:"Extended", format:"G59.#", range:[1, 64]} // extended WCS, output as G59.7, etc.

 // {name:"Extended", format:"G54 P#", range:[1, 64]} // extended WCS, output as G54 P7, etc.

]

};

Parameters Description

useZeroOffset Set to true to enable a work offset value of 0. Setting it to false will treat a

work offset of 0 as 1.

wcs Contains the definitions of the supported WCS formats.

name The name of the WCS output format. This will usually be Standard or

Extended. The name is displayed in the Format field of the Machine WCS

frame.

format The output format of the WCS. This is a text string that has an optional #

character that defines where the offset value will be placed. If # is not

specified, then the offset value will be placed at the end of the string. You can

also use multiple consecutive # characters to define the number of digits to

output with the WCS value, for example P## will output P01. Specifying $#

will place a # character in the output.

range Defines the valid range of work offsets for the defined format.

Entry Functions 4-115

 CAM Post Processor Guide 8/8/23

The wcsDefinitions Variable

The post processor kernel will format the output WCS code based on the format defined in

wcsDefinitions. Both a string and number is available to the post processor in the section object.

Variable Description

section.wcs The output code of the work offset (G54, G51 P1, etc.).

section.workOffset The work offset number.

 // wcs

 if (insertToolCall) { // force work offset when changing tool

 currentWorkOffset = undefined;

 }

 if (currentSection.workOffset != currentWorkOffset) {

 writeBlock(currentSection.wcs);

 currentWorkOffset = currentSection.workOffset;

 }
Output the Work Coordinate System Offset Number

4.3.5 Work Plane – 3+2 Operations

3+2 operations are supported by defining a tool orientation for the operation. This tool orientation is

referenced as the Work Plane in the post processor. The tool orientation is defined in the Geometry tab

of the operation.

Defining the Work Plane

Entry Functions 4-116

 CAM Post Processor Guide 8/8/23

Work Plane for 3+2 Operation

The output for a Work Plane will either be the rotary axes positions or the definition of the Work Plane

itself as Euler angles. For machine controls that support both formats the useMultiAxisFeatures variable

determines the Work Plane method to use. This variable, along with other variables that control 3+2

operations, is defined with the machine configuration settings and functions towards the top of the post

processor.

// Start of machine configuration logic

…

var useMultiAxisFeatures = false; // enable to use control enabled tilted plane

var useABCPrepositioning = false; // enable to preposition rotary axes prior to tilted plane output

var forceMultiAxisIndexing = false; // force multi-axis indexing for 3D programs

var eulerConvention = EULER_ZXZ_R; // euler angle convention for 3+2 operations
Definition of Variables for Tilted Plane Support

variable Description

useMultiAxisFeatures Enable this setting when the control supports tilted plane codes for 3+2

operations, such as G68.2, CYCLE800, PLANE SPATIAL, DWO, etc.

When it is disabled, the rotary axes will be output for 3+2 operations and

the output coordinates could be adjusted for the tables/heads based on the

TCP setting for each axis.

useABCPrepositioning Enable to position the rotary axes prior to the output of the tilted plane.

Disable to only output the tilted plane. This variable is only used when

useMultiAxisFeatures is set to true.

forceMultiAxisIndexing Forces the output of the rotary axes/tilted plane when the program is purely

3-axis. Disabling this variable will not output the rotary axis positions if

the entire program is 3-axis.

eulerConvention Defines the order of the Euler angle calculations that is required by the

machine for tilted plane output. If the post processor does not support Euler

angles, then this setting will be ignored.
Variables that Control the Output of 3+2 Operations

Entry Functions 4-117

 CAM Post Processor Guide 8/8/23

The eulerConvention setting is passed to the getEuler2 function and is used to calculate the Euler angles

for the Work Plane. It specifies the order of the primary axis rotations that the machine control requires

and can be one of the values in the following table.

Parameter Parameter Parameter Parameter

EULER_XYZ_R EULER_XYX_R EULER_XZX_R EULER_XZY_R

EULER_YXY_R EULER_YXZ_R EULER_YZX_R EULER_YZY_R

EULER_ZXY_R EULER_ZXZ_R EULER_ZYX_R EULER_ZYZ_R

EULER_XYZ_S EULER_XYX_S EULER_XZX_S EULER_XZY_S

EULER_YXY_S EULER_YXZ_S EULER_YZX_S EULER_YZY_S

EULER_ZXY_S EULER_ZXZ_S EULER_ZYX_S EULER_ZYZ_S

Euler Angle Order

Check the Programming Manual for your machine to determine if Euler angles are supported and the

order of rotations. The _R (rotated) variants of the Euler angles will use the modified orientation after

each rotation for each axis. The _S (static) variants will use the original coordinate system for all

rotations and is sometimes referred to as pitch, row, yaw.

The useMultiAxisFeatures and useABCPrepositioning variables can be controlled from the post

processor properties, simply adding a property with the same name. The activateMachine function

automatically checks for this property and will use it if it is defined.

properties = {

…

 useMultiAxisFeatures: {

 title: "Use G68.2",

 description: "Enable to output G68.2 blocks for 3+2 operations, disable to output rotary angles.",

 type: "boolean,

 value: true,

 scope:["machine", "post"],

 group:"multiaxis"},

 useABCPrepositioning: {

 title: "Preposition rotaries",

 description: "Enable to preposition rotary axes prior to G68.2 blocks.",

 scope: ["machine", "post"],

 group: "multiaxis",

 type: "boolean",

 value: true

 },

…
Defining useMultiAxisFeatures and useABCPrepositioning as Properties

The code handling 3+2 operations is usually found in the defineWorkPlane function but can also be

defined as inline code within the onSection function. The preferred method is using the

Entry Functions 4-118

 CAM Post Processor Guide 8/8/23

defineWorkPlane function, which controls the calculation and output of the rotary angles for multi-axis

and 3+2 operations. defineWorkPlane will be called from onSection.

 // position rotary axes for multi-axis and 3+2 operations

 var abc = defineWorkPlane(currentSection, true);
Calling the defineWorkPlane Function

The defineWorkPlane function is defined as follows and returns the initial rotary positions for multi-axis

and 3+2 operations.

defineWorkPlane(_section, _setWorkPlane)

Arguments Description

_section The operation (section) used to calculate the rotary angles.

_setWorkPlane true = output the rotary angle positions and adjust the output coordinates for

the 3+2 rotation. false = don’t output the rotary angle positions. The rotary

angles will still be calculated and the output coordinates will be adjusted for

the 3+2 rotation.
The defineWorkPlane Function

 // use Euler angles for Work Plane

 if (useMultiAxisFeatures) {

 var abc = _section.workPlane.getEuler2(eulerConvention);

 cancelTransformation();

 // use rotary angles for Work Plane

 } else {

 abc = getWorkPlaneMachineABC(_section.workPlane, true);

 }

 // output the work plane

 if (_setWorkPlane) {

 setWorkPlane(abc);

 }

 }
Work Plane Calculations

The function getWorkPlaneMachineABC is used to calculate the rotary axes positions that satisfy the

Work Plane. It will return the calculated angles of either the rotary axis or tilted plane positions.

getWorkPlaneMachineABC(workPlane, rotate)

Arguments Description

workPlane The work plane matrix used to calculate the rotary-angles. This variable is

typically section.workPlane.

rotate Enable to adjust the output coordinates for the work plane orientation. Disable

to just calculate the rotary angles and not adjust the XYZ coordinates for the

axis rotations.

Entry Functions 4-119

 CAM Post Processor Guide 8/8/23

The getWorkPlaneMachineABC Function

This function is standard from post to post, but there are a couple of areas that may need to be modified.

The first step is to calculate the rotary angles based on the work plane orientation by calling the

getABCByPreference function.

 var currentABC = isFirstSection() ? new Vector(0, 0, 0) : getCurrentDirection();

 var abc = machineConfiguration.getABCByPreference(W, currentABC, ABC,

 PREFER_PREFERENCE, ENABLE_ALL);
Calculate the Rotary Axis Angles Based on the Work Plane

abc = machineConfiguration.getABCByPreference(workPlane, current, controllingAxis, type, options)

abc = section.getABCByPreference(machineConfiguration, workPlane, current, controllingAxis, type,
 options)

Arguments Description

machineConfiguration The Machine Configuration. This parameter is only specified with the

section.getABCByPreference version.

workPlane The work plane matrix used to calculate the rotary-angles. This variable is

typically section.workPlane.

current The current rotary angles. This is usually the ABC position returned by

getCurrentDirection. In the first operation this value is set to a tool axis, so

the current rotary angles are defined as 0,0,0 in this case.

controllingAxis The axis used to determine the preferred solution in conjunction with the type

argument. It can be A, B, or C for a single axis, or ABC to consider all

defined rotary axes.

type The preference type as described in the Preference Type table.

options Options used to control the solution as described in the Controlling Options

table.
The getABCByPreference Function

Preference Type Description

PREFER_PREFERENCE Uses the preference specified with the axis, either in the CAM Machine

Configuration or in the createAxis function for hardcoded kinematics.

PREFER_CLOSEST Selects the solution closest to the current rotary axes position. All

preference types will choose the closest solution that satisfies the

preference type chosen. PREFER_CLOSEST will select the closest

solution without regards to any other preference.

PREFER_POSITIVE The closest solution with a positive angle for the controlling axis. This

preference cannot be used when ABC is the controlling axes.

PREFER_NEGATIVE The closest solution with a negative angle for the controlling axis. This

preference cannot be used when ABC is the controlling axes.

Entry Functions 4-120

 CAM Post Processor Guide 8/8/23

Preference Type Description

PREFER_CLW The closes solution that moves in a clockwise direction from the current

axis position. This preference cannot be used when ABC is the

controlling axes.

PREFER_CCW The closes solution that moves in a counterclockwise direction from the

current axis position. This preference cannot be used when ABC is the

controlling axes.
The Preferred Solution Types

Controlling Options Description

ENABLE_NONE Disables all controlling options.

ENABLE_RESET Respects the reset parameter in the axis definitions. The reset parameter

resets the axis to 0 degrees before calculating the closest solution.

ENABLE_WCS Solves for a rotary axis perpendicular to the spindle vector as defined by

the tool orientation of the operation. For example, if the tool orientation

is facing up in Z and has an XY-rotation, then the C-axis will use the X-

axis orientation of the rotation to determine the C-axis position.

ENABLE_LIMITS Solves for a rotary axis perpendicular to the spindle vector to keep the

linear axes within their defined limits. The limits (range) of the linear

axes must be defined in the Machine Configuration. This option is only

valid for the section.getABCByPreference version.

ENABLE_ALL Enables all controlling options.
The Controlling Options for the Rotary Axes Solution

Use ENABLE_WCS for a Tool Perpendicular to the Rotary Table

There are two variations of the getABCByPreference function, one in the machineConfiguration object

and the other in the section object. The only difference between the two is that the section function

supports the ENABLE_LIMITS option, while the machineConfiguration function does not. The

ENABLE_LIMITS works with rotary tables that are perpendicular to the spindle vector and will adjust

Entry Functions 4-121

 CAM Post Processor Guide 8/8/23

the rotary table position to bring the linear XYZ coordinates within their defined limits if possible. If it

is not possible to bring the machine within its limits, then the calculated rotary axis positions will be the

same as if ENABLE_LIMITS was not specified.

You must define the limits of the linear axes in the machine configuration when using

ENABLE_LIMITS. The limits can be defined as part of an external Machine Configuration or

hardcoded within the post processor if a Machine Configuration is not used.

Defining the Limits of a Linear Axis in the Machine Configuration

 // define linear axes limits

 var xAxis = createAxis({actuator:"linear", coordinate:0, table:true, axis:[1, 0, 0],

 range:[xAxisMinimum, xAxisMaximum]});

 var yAxis = createAxis({actuator:"linear", coordinate:1, table:true, axis:[0, 1, 0],

 range:[yAxisMinimum, yAxisMaximum]});

 var zAxis = createAxis({actuator:"linear", coordinate:2, table:true, axis:[0, 0, 1],

 range:[-100000, 100000]});

 machineConfiguration.setAxisX(xAxis);

 machineConfiguration.setAxisY(yAxis);

 machineConfiguration.setAxisZ(zAxis);
Defining the Limits of the Linear Axes in the Post Processor

Since the getABCByPreference function will return a rotary axis position even if the machine is not

within the defined linear limits, you must call the doesToolPathFitWithinLimits function to determine if

the calculated rotary axis position will keep the machine within limits for this operation.

 bestABC = section.getABCByPreference(machineConfiguration, section.workPlane,

 getCurrentDirection(), C, PREFER_CLOSEST, ENABLE_RESET | ENABLE_LIMITS);

 bestABC = section.doesToolpathFitWithinLimits(machineConfiguration, bestABC) ?

 bestABC : undefined;
Determine if Linear Axes are Within Limits

Entry Functions 4-122

 CAM Post Processor Guide 8/8/23

withinLimits = section.doesToolpathFitWithinLimits(machineConfiguration, abc)

Arguments Description

machineConfiguration The Machine Configuration.

abc The rotary angle positions used to determine if the linear XYZ axes are

within their defined limits.
The doesToolpathFitWithinLimits Function

The 3+2 operation coordinates may need to be adjusted for the rotary axes. This is done by calling

section.optimize3DPositionsByMachine with the rotary axes and optimization type. Most posts will use

the Tool Control Point (TCP) setting for each axis by using the OPTIMIZE_AXIS setting.

 if (!currentSection.isOptimizedForMachine()) {
 machineConfiguration.setToolLength(addToolLength ? getBodyLength(tool)); // define the tool length for
head adjustments
 currentSection.optimize3DPositionsByMachine(machineConfiguration, abc, OPTIMIZE_AXIS);

 }
Adjust the Coordinates for the Rotary Axes

It is important to know that the XYZ coordinates provided to the post processor for 3+2 are in the work

plane coordinate system, meaning they are in the XY-plane defined by the work plane. This is fine for

machines that support multi-axis features such as G68.2, CYCLE800, etc., but could be incorrect for

machines that do not support these features.

The section.optimize3DPositionsByMachine function is used to calculate the proper coordinates aligned

with the defined machine configuration for the specified operation.

section.optimize3DPositionsByMachine(machineConfiguration, abc, optimizeType);
Adjust the Coordinates for the Machine Configuration for 3+2 Machining

Arguments Description

machineConfiguration The active machine configuration.

abc The current rotary axis positions passed as a Vector.

optimizeType Optimization type as described in the following table.
Optimize3DPositionsByMachine Arguments

optimizeType Description

OPTIMIZE_NONE The coordinates will be the tool tip position (TCP).

OPTIMIZE_BOTH The coordinates will be adjusted for the table and head rotations.

OPTIMIZE_TABLES The coordinates will be adjusted for the rotary tables.

OPTIMIZE_HEADS The coordinates will be adjusted for the rotary heads.

OPTIMIZE_AXIS The coordinates will be adjusted based on the TCP setting for each axis as

defined in the createAxis command.
Optimization Types for 3+2 Operations

Entry Functions 4-123

 CAM Post Processor Guide 8/8/23

If TCP positions are output in a 3+2 operation you will have to ensure that the TCP has been enabled for

this operation (G43.4, TRAORI, etc.).

The logic that controls the Work Plane calculation is typically located in the defineWorkPlane section,

but can be in the onSection function for legacy post processors

 var abc = new Vector(0, 0, 0);

 // use 5-axis indexing for multi-axis mode

 if (!is3D() || machineConfiguration.isMultiAxisConfiguration()) {

 //

 if (currentSection.isMultiAxis()) {

 forceWorkPlane();

 cancelTransformation();

 } else {

 // use Euler angles for Work Plane

 if (useMultiAxisFeatures) {

 var eulerXYZ = currentSection.workPlane.getEuler2(EULER_ZXZ_R);

 abc = new Vector(eulerXYZ.x, eulerXYZ.y, eulerXYZ.z);

 cancelTransformation();

 // use rotary axes angles for Work Plane

 } else {

 abc = getWorkPlaneMachineABC(currentSection.workPlane, true, true);

 }

 // output the work plane

 setWorkPlane(abc);

 }

 } else { // pure 3D

 var remaining = currentSection.workPlane;

 if (!isSameDirection(remaining.forward, new Vector(0, 0, 1))) {

 error(localize("Tool orientation is not supported."));

 return abc;

 }

 setRotation(remaining);

 }
Work Plane Calculations

You should be aware that the X-axis direction of the Work Plane does affect the Euler angle calculation.

The typical method of defining the Work Plane is to keep the X-axis orientation pointing in the positive

direction as you look down the Z-axis, but on some table/table style machines this will cause the

machining to be on the back side of the table, so in this case you will want the X-axis pointing in the

negative direction.

The setWorkPlane function does the actual output of the Work Plane and can vary from post processor

to post processor, depending on the requirements of the machine control. It will output the calculated

Entry Functions 4-124

 CAM Post Processor Guide 8/8/23

Euler angles or rotary axes positions, and in some cases, both. In the following code, G68.2 is used to

define the Work Plane using Euler angles.

function setWorkPlane(abc) {

 if (is3D() && !machineConfiguration.isMultiAxisConfiguration()) {

 return;

 }

 // the Work Plane does not change, do not output it

 if (!((currentWorkPlaneABC == undefined) ||

 abcFormat.areDifferent(abc.x, currentWorkPlaneABC.x) ||

 abcFormat.areDifferent(abc.y, currentWorkPlaneABC.y) ||

 abcFormat.areDifferent(abc.z, currentWorkPlaneABC.z))) {

 return; // no change

 }

 // unlock rotary axes

 onCommand(COMMAND_UNLOCK_MULTI_AXIS);

 // retract the tool

 if (!retracted) {

 writeRetract(Z);

 }

 // output using Euler angles

 if (useMultiAxisFeatures) {

 cancelWorkPlane();

 // preposition the rotary axes

 if (machineConfiguration.isMultiAxisConfiguration()) {

 var machineABC = abc.isNonZero() ? getWorkPlaneMachineABC(currentSection.workPlane,

false) : abc;

 if (useABCPrepositioning || abc.isZero()) {

 positionABC(machineABC, true);

 }

 setCurrentABC(machineABC); // required for machine simulation

 }

 if (abc.isNonZero()) {

 gRotationModal.reset();

 writeBlock(gRotationModal.format(68.2), "X" + xyzFormat.format(0), "Y" +

xyzFormat.format(0), "Z" + xyzFormat.format(0), "I" + abcFormat.format(abc.x), "J" +

abcFormat.format(abc.y), "K" + abcFormat.format(abc.z)); // set frame

 writeBlock(gFormat.format(53.1)); // turn machine

 }

 // output rotary axis positions

Entry Functions 4-125

 CAM Post Processor Guide 8/8/23

 } else {

 positionABC(abc, true);

 }

 // lock rotary axes

 onCommand(COMMAND_LOCK_MULTI_AXIS);

}
Output Work Plane in setWorkPlane Function

4.3.6 Initial Position

The initial position of the operation is available to the onSection function and is output here. Tool

length compensation on the control is enabled with the initial position when the tool is changed or if it

has been disabled between operations.

 // force all axes to be output at start of operation

 forceAny();

 // get the initial tool position and retract in Z if necessary

 var initialPosition = getFramePosition(currentSection.getInitialPosition());

 if (!retracted) {

 if (getCurrentPosition().z < initialPosition.z) {

 writeBlock(gMotionModal.format(0), zOutput.format(initialPosition.z));

 }

 }

 // output tool length offset on tool change or if tool has been retracted

 if (insertToolCall || retracted) {

 var lengthOffset = tool.lengthOffset;

 if (lengthOffset > numberOfToolSlots) {

 error(localize("Length offset out of range."));

 return;

 }

 gMotionModal.reset();

 writeBlock(gPlaneModal.format(17));

 // output XY and then Z with 3-axis or table configuration

 if (!machineConfiguration.isHeadConfiguration()) {

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0), xOutput.format(initialPosition.x), yOutput.format(initialPosition.y)

);

 writeBlock(gMotionModal.format(0), gFormat.format(43), zOutput.format(initialPosition.z),

 hFormat.format(lengthOffset));

 // output XYZ with head configuration

Entry Functions 4-126

 CAM Post Processor Guide 8/8/23

 } else {

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0),

 gFormat.format(43), xOutput.format(initialPosition.x),

 yOutput.format(initialPosition.y),

 zOutput.format(initialPosition.z), hFormat.format(lengthOffset)

);

 }

 // do not activate tool length compensation if already activated

 } else {

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0),

 xOutput.format(initialPosition.x),

 yOutput.format(initialPosition.y)

);

 }
Output Current Position and Tool Length Compensation

4.4 The section Object

The start of a machining operation defined in CAM is stored in the intermediate file as a separate

section. The section object contains the information used to generate the operation. All defined sections

are accessible to the post processor at any time in the post processor by accessing the section by its ID.

This section provides a description of some of the functions/variables used to access the information

stored in a section. You will find a description of various section functions/variables in other sections of

this manual where they are used.

4.4.1 currentSection

The currentSection variable refers to the active section/operation. It is unspecified if used outside of the

scope of a section, for example in onOpen or onClose. In these functions you will need to access the

section directly using the getSection function.

 var firstSection = getSection(0); // access the first section of the program

 var lastSection = getSection(getNumberOfSections() – 1) // access the last section of the program
Accessing the First and Last Sections

4.4.2 getSection

value = getSection(sectionId)

Entry Functions 4-127

 CAM Post Processor Guide 8/8/23

Arguments Description

sectionId The ID of the section to return. sectionId can be in the range of 0 through the

number of defined sections (getNumberOfSections).

Returns the section object associated with the specified section ID.

4.4.3 getNumberOfSections

value = getNumberOfSections()

Returns the number of sections (operations) defined in the program.

 for (var i = 0; i < getNumberOfSections(); ++i) { // loop through all sections

 var section = getSection(i);

 …
Looping Through All Defined Sections

4.4.4 getId

value = section.getId()

The getId function returns the ID of the provided section. It will be in the range of 0 through the number

of defined sections minus 1 (getNumberOfSections).

// loop through sections defined after the current section

for (var i = currentSection.getId() + 1; i < numberOfSections; ++i) {

 var section = getSection(i);
Looping Through Following Sections

4.4.5 isToolChangeNeeded

value = isToolChangeNeeded([section], arguments)

Arguments Description

section Specifies the section to test for a tool change. If section is not specified, then

currentSection is assumed.

arguments Specifies one or more of the Tool object variables to use as criteria to

determine if a tool change is needed. This list of criteria can be number,

description, lengthOffset, or any other member of the Tool object.

Returns true if a tool change is required for the specified section. The comparison criteria are passed as

a list of arguments to the function and can be any valid Tool object variable.

var insertToolCall = isToolChangeNeeded("number", “lengthOffset);
Determining if a Tool Change is Required for the Current Section Based on the Tool Number and Length Offset

Entry Functions 4-128

 CAM Post Processor Guide 8/8/23

4.4.6 isNewWorkPlane

value = isNewWorkPlane([section])

Arguments Description

section Specifies the section to test for a Work Plane change. If section is not

specified, then currentSection is assumed.

Returns true if the work plane changes for the specified section as compared to the previous section.

var newWorkPlane = isNewWorkPlane();
Determining if the Work Plane Changes Between Sections

4.4.7 isNewWorkOffset

value = isNewWorkOffset([section])

Arguments Description

section Specifies the section to test for a Work Offset change. If section is not

specified, then currentSection is assumed.

Returns true if the work offset changes for the specified section as compared to the previous section.

var newWorkOffset = isNewWorkOffset();
Determining if the Work Offset Changes Between Sections

4.4.8 isSpindleSpeedDifferent

value = isSpindleSpeedDifferent([section])

Arguments Description

section Specifies the section to test for a change in the spindle speed or spindle mode.

If section is not specified, then currentSection is assumed.

Returns true if the spindle speed or spindle mode (RPM, SFM) differs from the previous section, false if

they are the same.

 if (isSpindleSpeedDifferent ()) {
Determining if the Spindle Speed or Mode Changes Between Sections

4.4.9 isDrillingCycle

isDrillingCycle([section,] [checkBoringCycles])

Entry Functions 4-129

 CAM Post Processor Guide 8/8/23

Arguments Description

section Specifies the section to check for a drilling cycle. If section is not specified,

then currentSection is assumed.

checkBoringCycles When set to false, boring cycles with a shift value will not be considered a

drilling cycle, otherwise if set to true or not specified shift boring cycles are

considered drilling cycles.

Returns true if the section is a drilling operation, otherwise returns false. Milling cycles are not

considered a drilling cycle.

 if (isDrillingCycle()) { // test if the current section is a drilling operation

 if (isDrillingCycle(false)) { // do not include shift boring cycles as a drilling operation
Determining if the Section is a Drilling Operation

4.4.10 isTappingCycle

isTappingCycle([section])

Arguments Description

section Specifies the section to check for a tapping cycle. If section is not specified,

then currentSection is assumed.

Returns true if the section is a tapping cycle, otherwise returns false.

 if (isTappingCycle()) { // test if the current section is a tapping operation
Determining if the Section is a Tapping Operation

4.4.11 isAxialCenterDrilling

isAxialCenterDrilling([section,] [checkLiveTool])

Arguments Description

section Specifies the section to check for an axial drilling cycle. If section is not

specified, then currentSection is assumed.

checkLiveTool When set to false, the live tool setting is ignored and will not be used in testing

for an axial center drilling operation, otherwise if set to true or not specified

operations using a live tool will not be considered as an axial center drilling

operation.

Returns true if the section is an axial drilling cycle, otherwise returns false. Axial drilling cycles are

considered drilling operations that are at X0 Y0 and are usually tested for on lathes.

 if (isAxialCenterDrilling()) { // test if the current section is an axial center drilling cycle

 if (isAxialCenterDrilling(false)) { // ignore the Live Tool setting

Entry Functions 4-130

 CAM Post Processor Guide 8/8/23

Determining if the Section is an Axial Center Drilling Operation

4.4.12 isMillingCycle

isMillingCycle([section,] [checkBoringCycles])

Arguments Description

section Specifies the section to check for a milling cycle. If section is not specified,

then currentSection is assumed.

checkBoringCycles When set to true, boring cycles with a shift value will be considered a milling

cycle, otherwise if set to false or not specified shift boring cycles are not

considered milling cycles.

Returns true if the section is a milling cycle, otherwise returns false.

 if (isMillingCycle()) { // test if the current section is a milling cycle

 if (isMillingCycle(true)) { // include shift boring cycles as a drilling operation
Determining if the Section is a Drilling Operation

4.4.13 isProbeOperation

value = isProbeOperation([section])

Arguments Description

section Specifies the section to check for a probing operation. If section is not

specified, then currentSection is assumed.

Returns true if the section is a probing operation, otherwise return false. You can also check if the tool

type is set to TOOL_PROBE to determine if probing is active for an operation.

 if (isProbeOperation()) { // test if the current section is a probe operation

 if (section(i).getTool().type == TOOL_PROBE) { // probing or inspection operation
Determining if the Section is a Probing Operation

4.4.14 isInspectionOperation

value = isInspectionOperation([section])

Arguments Description

section Specifies the section to check for an inspection operation. If section is not

specified, then currentSection is assumed.

Returns true if the section is an inspection operation, otherwise return false.

 if (isInspectionOperation()) { // test if the current section is an inspection operation

Entry Functions 4-131

 CAM Post Processor Guide 8/8/23

 if (section(i).getTool().type == TOOL_PROBE) { // the specified section is a probing operation
Determining if the Section is an Inspection Operation

4.4.15 isDepositionOperation

value = isDepositionOperation([section])

Arguments Description

section Specifies the section to check for a deposition operation. If section is not

specified, then currentSection is assumed.

Returns true if the section is a deposition operation, otherwise return false.

 if (isDepositionOperation()) { // test if the current section is a deposition operation
Determining if the Section is a Deposition Operation

4.4.16 probeWorkOffset

value = section.probeWorkOffset

The probeWorkOffset variable contains the WCS number that is active during the probing operation. It

is the same as the probe-output-work-offset parameter.

validate(currentSection.probeWorkOffset <= 6, "Angular Probing supports work offsets 1-6.");
Validating the Range of the Probe Work Offset

4.4.17 getNextTool

tool = getNextTool([section,] [firstTool,] [arguments])

Arguments Description

section Specifies the section to use as the base tool. The next tool following the tool

used in this section will be returned. If section is not specified, then

currentSection is assumed.

firstTool Returns the first tool if the end of the program is reached when set to true.

Returns undefined if it is not specified or set to false and the end of the

program is reached.

arguments Specifies one or more of the Tool object variables to use as criteria to

determine the next tool. This list of criteria can be number, description,

lengthOffset, or any other member of the Tool object.

The getNextTool function returns the next tool used in the program based on the active tool in the

current section. You can pass number, description, diameter, or any other member of the tool object as

the criteria for determining if the tool is different than the current tool. This function will take any

Entry Functions 4-132

 CAM Post Processor Guide 8/8/23

number of text string arguments. If an argument is not passed to this function, then it will choose the

next tool based on the tool number.

var nextTool = getNextTool(true); // get next tool based on tool number, can return the first tool

var nextTool = getNextTool("description"); // get next tool based on tool description
Accessing the Next Tool

4.4.18 getFirstTool

tool = getFirstTool()

The getFirstTool function returns the first tool used in the program.

var firstTool = getFirstTool();
Accessing the First Tool

4.4.19 toolZRange

zRange = toolZRange()

The toolZRange function returns the Z-axis range for the active tool for the current and subsequent

sections that use this tool. It will return undefined if the tool orientation of the active section is not along

the Z-axis.

var zRange = toolZRange();
Calculate the Z-axis Minimum and Maximum for the Active Section(s)

4.4.20 strategy

value = section.strategy;

The strategy variable is part of the section object and contains a string that represents the machining

strategy used for the section. It contains the same value as the operation-strategy parameter.

 } else { // do not output smoothing for the following operations

 smoothing.isAllowed = !(currentSection.strategy == "drill"));

 }
Checking for a Drill Operation

4.4.21 checkGroup

value = section.checkGroup(strategy-list)

Arguments Description

strategy-list A list of machining strategy groups to check, separated by commas.

Entry Functions 4-133

 CAM Post Processor Guide 8/8/23

The checkGroup function returns true if the section machining strategy belongs to all of the strategy

groups specified in the strategy-list. The valid strategy groups are listed in the following table. Each of

these variables should be prefixed with STRATEGY_, for example STRATEGY_2D.

2D 3D ADDITIVE CHECKSURFACE

FINISHING HOLEMAKING INSPECTION JET

DRILLING MILLING MULTIAXIS PROBING

ROTARY ROUGHING SAMPLING SECONDARYSPINDLE

SURFACE THREAD TURNING
Strategy Groups (Prefixed with STRATEGY_)

 } else { // do not output smoothing for the following operations

 smoothing.isAllowed = !(currentSection.checkGroup(STRATEGY_DRILLING));

 }
Checking for a Drill Operation

4.5 onSectionEnd

function onSectionEnd() {

The onSectionEnd function can be used to define the end of an operation, but in most post processors

this is handled in the onSection function. The reason for this is that different output will be generated

depending on if there is a tool change, WCS change, or Work Plane change and this logic is handled in

the onSection function (see the insertToolCall variable), though it could be handled in the onSectionEnd

function if desired by referencing the getNextSection and isLastSection functions.

 var insertToolCall = isLastSection() ||

 getNextSection().getForceToolChange && getNextSection().getForceToolChange() ||

 (getNextSection().getTool().number != tool.number);

 var retracted = false; // specifies that the tool has been retracted to the safe plane

 var newWorkOffset = isLastSection() ||

 (currentSection.workOffset != getNextSection().workOffset); // work offset changes

 var newWorkPlane = isLastSection() ||

 !isSameDirection(currentSection.getGlobalFinalToolAxis(),

 getNextSection().getGlobalInitialToolAxis());

 if (insertToolCall || newWorkOffset || newWorkPlane) {

 // stop spindle before retract during tool change

 if (insertToolCall) {

 onCommand(COMMAND_STOP_SPINDLE);

 }

Entry Functions 4-134

 CAM Post Processor Guide 8/8/23

 // retract to safe plane

 retracted = true;

 writeBlock(gFormat.format(28), gAbsIncModal.format(91), "Z" + xyzFormat.format(0)); // retract

 writeBlock(gAbsIncModal.format(90));

 zOutput.reset();

 if (insertToolCall) {

 onCommand(COMMAND_COOLANT_OFF);

 if (getProperty("optionalStop")) {

 onCommand(COMMAND_OPTIONAL_STOP);

 }

 }

 }
 Ending the Operation in onSectionEnd

You will need to remove the similar code from the onSection function and probably the onClose

function, which will duplicate the session ending code if left intact.

One reason for ending the operation in the onSectionEnd function is if a Manual NC command is used

between operations. The Manual NC command will be processed prior to the onSection function and if

the previous operation is terminated in onSection, then the Manual NC command will be acted upon

prior to ending the previous operation.

The onSectionEnd function is pretty basic in most posts and will reset codes that may have been

changed in the operation and possibly some variables that are operation specific.

function onSectionEnd() {

 writeBlock(gPlaneModal.format(17));

 forceAny();

}
Basic onSectionEnd Function

4.6 onClose

function onClose() {

The onClose function is called at the end of the last operation, after onSectionEnd. It is used to define

the end of an operation, if not handled in onSectionEnd, and to output the end-of-program codes.

function onClose() {

 // end previous operation

 writeln("");

 optionalSection = false;

 onCommand(COMMAND_COOLANT_OFF);

Entry Functions 4-135

 CAM Post Processor Guide 8/8/23

 writeRetract(Z); // retract

 disableLengthCompensation(true);

 setSmoothing(false);

 zOutput.reset();

 setWorkPlane(new Vector(0, 0, 0)); // reset working plane

 writeRetract(X, Y); // return to home

 // output end-of-program codes

 onImpliedCommand(COMMAND_END);

 onImpliedCommand(COMMAND_STOP_SPINDLE);

 writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off

 writeln("%");

}
Basic onClose Function

4.7 onTerminate

function onTerminate() {

The onTerminate function is called at the end of post processing, after onClose. It is called after all

output to the NC file is finished and the NC file is closed. It may be used to rename the output file(s)

after processing has finished, to automatically create a setup sheet, or to run another program against the

output NC file.

function onTerminate() {

 var outputPath = getOutputPath();

 var programFilename = FileSystem.getFilename(outputPath);

 var programSize = FileSystem.getFileSize(outputPath);

 var postPath = findFile("setup-sheet-excel-2007.cps");

 var intermediatePath = getIntermediatePath();

 var a = "--property unit " + ((unit == IN) ? "0" : "1"); // use 0 for inch and 1 for mm

 if (programName) {

 a += " --property programName \"'" + programName + "'\"";

 }

 if (programComment) {

 a += " --property programComment \"'" + programComment + "'\"";

 }

 a += " --property programFilename \"'" + programFilename + "'\"";

 a += " --property programSize \"" + programSize + "\"";

 a += " --noeditor --log temp.log \"" + postPath + "\" \"" + intermediatePath + "\" \"" +

 FileSystem.replaceExtension(outputPath, "xlsx") + "\"";

 execute(getPostProcessorPath(), a, false, "");

 executeNoWait("excel", "\"" + FileSystem.replaceExtension(outputPath, "xlsx") + "\"", false, "");

}
Create and Display Setup Sheet from onTerminate

Entry Functions 4-136

 CAM Post Processor Guide 8/8/23

4.8 onCommand

function onCommand(command) {

Arguments Description

command Command to process.

The onCommand function can be called by a Manual NC command, directly from HSM, or from the

post processor.

Command Description
COMMAND_ACTIVATE_SPEED_FEED_SYNCHRONIZATION Activate threading mode
COMMAND_ALARM Alarm
COMMAND_ALERT Alert
COMMAND_BREAK_CONTROL Tool break control
COMMAND_CALIBRATE Run calibration cycle
COMMAN_CHANGE_PALLET Change pallet
COMMAND_CLEAN Run cleaning cycle
COMMAND_CLOSE_DOOR Close primary door
COMMAND_COOLANT_OFF Coolant off (M09)
COMMAND_COOLANT_ON Coolant on (M08)
COMMAND_DEACTIVATE_SPEED_FEED_SYNCHRONIZATION Deactivate threading mode
COMMAND_END Program end (M02)
COMMAND_EXACT_STOP Exact stop
COMMAND_LOAD_TOOL Tool change (M06)
COMMAND_LOCK_MULTI_AXIS Locks the rotary axes
COMMAND_MAIN_CHUCK_CLOSE Close main chuck
COMMAND_MAIN_CHUCK_OPEN Open main chuck
COMMAND_OPEN_DOOR Open primary door
COMMAND_OPTIONAL_STOP Optional program stop (M01)
COMMAND_ORIENTATE_SPINDLE Orientate spindle (M19)
COMMAND_POWER_OFF Power off
COMMAND_POWER_ON Power on
COMMAND_SECONDARY_CHUCK_CLOSE Close secondary chuck
COMMAND_SECONDARY_CHUCK_OPEN Open secondary chuck
COMMAND_SECONDARY_SPINDLE_SYNCHRONIZATION_ACTIVATE Activate spindle synchronization
COMMAND_SECONDARY_SPINDLE_SYNCHRONIZATION_DEACTIVATE Deactivate spindle synchronization
COMMAND_SPINDLE_CLOCKWISE Clockwise spindle direction (M03)
COMMAND_SPINDLE_COUNTERCLOCKWISE Counter-clockwise spindle direction

(M04)
COMMAND_START_CHIP_TRANSPORT Start chip conveyor
COMMAND_START_SPINDLE Start spindle in previous direction
COMMAND_STOP Program stop (M00)
COMMAND_STOP_CHIP_TRANSPORT Stop chip conveyor
COMMAND_STOP_SPINDLE Stop spindle (M05)

Entry Functions 4-137

 CAM Post Processor Guide 8/8/23

Command Description
COMMAND_TOOL_MEASURE Measure tool
COMMAND_UNLOCK_MULTI_AXIS Unlocks the rotary axes
COMMAND_VERIFY Verify path/tool/machine integrity

Valid Commands

The Manual NC commands that call onCommand are described in the Manual NC Commands chapter.

Internal calls to onCommand are usually generated when expanding a cycle. The post processor itself

will call onCommand directly to perform simple functions, such as outputting a program stop, cancelling

coolant, opening the main door, turning on the chip conveyor, etc.

 // stop spindle and cancel coolant before retract during tool change

 if (insertToolCall && !isFirstSection()) {

 onCommand(COMMAND_COOLANT_OFF);

 onCommand(COMMAND_STOP_SPINDLE);

 }
Calling onCommand Directly from Post Processor

The onImpliedCommand function changes the state of certain settings in the post engine without calling

onCommand and outputting the associated codes with the command. The state of certain parameters is

important when the post processor engine expands cycles.

 onImpliedCommand(COMMAND_END);

 onImpliedCommand(COMMAND_STOP_SPINDLE);

 onImpliedCommand(COMMAND_COOLANT_OFF);

 writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off
Using onImpliedCommand

4.9 onComment

function onComment(message) {

Arguments Description

message Text of comment to output.

The onComment function is called when the Manual NC command Comment is issued. It will format

and output the text of the comment to the NC file.

Entry Functions 4-138

 CAM Post Processor Guide 8/8/23

The Comment Manual NC Command

There are two other functions that are used to format and output comments, formatComment and

writeComment. These comment functions are standard in nature and do not typically have to be

modified, though the permittedCommentChars variable, defined at the top of the post, is used to define

the characters that are allowed in a comment and may have to be changed to match the control. The

formatComment function will remove any characters in the comment that are not specified in this

variable. Lowercase letters will be converted to uppercase by the formatComment function. If you want

to support lowercase letters, then they would have to be added to the permittedCommentChars variable

and the formatComment function would need to have the conversion to uppercase removed.

var permittedCommentChars = " ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,=_-";
Defining the Permitted Characters for Comments

/** Format a comment */

function formatComment(text) {

 return "(" + filterText(String(text).toUpperCase(), permittedCommentChars).replace(/[\(\)]/g, "") +

")";

}

/** Output a comment */

function writeComment(text) {

 writeln(formatComment(text));

}

/** Process the Manual NC Comment command */

function onComment(message) {

 var comments = String(message).split(";"); // allow multiple lines of comments per command

 for (comment in comments) {

 writeComment(comments[comment]);

 }

}
The Comment Functions

4.10 onDwell

function onDwell(seconds) {

Entry Functions 4-139

 CAM Post Processor Guide 8/8/23

Arguments Description

seconds Dwell time in seconds.

The onDwell function can be called by a Manual NC command, directly from HSM, or from the post

processor. The Manual NC command that calls onDwell is described in the Manual NC Commands

chapter. Internal calls to onDwell are usually generated when expanding a cycle. The post processor

itself will call onDwell directly to output a dwell block.

function onDwell(seconds) {

 if (seconds > 99999.999) {

 warning(localize("Dwelling time is out of range."));

 }

 milliseconds = clamp(1, seconds * 1000, 99999999);

 writeBlock(gFeedModeModal.format(94), gFormat.format(4), "P" +

 milliFormat.format(milliseconds));

}
Output the Dwell Time in Milliseconds

 onCommand(COMMAND_COOLANT_ON);

 onDwell(1.0); // dwell 1 second after turning coolant on
Calling onDwell Directly from Post Processor

4.11 onParameter

function onParameter(name, value) {

Arguments Description

name Parameter name.

value Value stored in the parameter.

Almost all parameters used for creating a machining operation in HSM are passed to the post processor.

Common parameters are available using built in post processor variables (currentSection, tool, cycle,

etc.) as well as being made available as parameters. Other parameters are passed to the onParameter

function.

74: onParameter('operation:context', 'operation')

75: onParameter('operation:strategy', 'drill')

76: onParameter('operation:operation_description', 'Drill')

77: onParameter('operation:tool_type', 'tap right hand')

78: onParameter('operation:undercut', 0)

79: onParameter('operation:tool_isTurning', 0)

80: onParameter('operation:tool_isMill', 0)

81: onParameter('operation:tool_isDrill', 1)

82: onParameter('operation:tool_taperedType', 'tapered_bull_nose')

Entry Functions 4-140

 CAM Post Processor Guide 8/8/23

83: onParameter('operation:tool_unit', 'inches')

84: onParameter('operation:tool_number', 4)

85: onParameter('operation:tool_diameterOffset', 4)

86: onParameter('operation:tool_lengthOffset', 4)
Sample Parameters Passed to the onParameter Function from Dump Post Processor

The name of the parameter along with its value is passed to the onParameter function. Some Manual

NC commands will call the onParameter function, these are described in the Manual NC Commands

chapter. You can see how to run and analyze the output from the dump.cps post processor in the

Debugging chapter.

function onParameter(name, value) {

 switch (name) {

 case "job-notes":

 if (!firstNote) {

 writeNotes(value, true);

 }

 firstNote = false;

 break;

 }

}
 Sample onParameter Function

4.11.1 getParameter Function

value = getParameter(name [,default])

Arguments Description

name Parameter name.

default The value to return if the requested parameter is not defined. If a default value

is not specified and the parameter is not defined, then undefined is returned.

You can retrieve operation parameters at any place in the post processor by calling the getParameter

function. Operation parameters are defined as parameters that are redefined for each machining

operation. There is a chance that a parameter does not exist so it is recommended that you check for the

parameter either by specifying a default value in the getParameter call or by using the hasParameter

function.

 var comment = getParameter("operation-comment", ""); // get the parameter value

 if (comment) {

 writeComment(comment);

 }
Verify a Parameter Exists Using the getParameter Function

 if (hasParameter("operation-comment")) { // verify the parameter exists

Entry Functions 4-141

 CAM Post Processor Guide 8/8/23

 var comment = getParameter("operation-comment"); // get the parameter value

 if (comment) {

 writeComment(comment);

 }

 }
Verify a Parameter Exists Using the hasParameter Function

When scanning through the operations in the intermediate file it is possible to access the parameters for

that operation by using the section variant of the hasParameter and getParameter functions.

 // write out all operation comments

 writeln("List of Operations:");

 for (var i = 0; i < getNumberOfSections(); ++i) {

 var section = getSection(i);

 var comment = section.getParameter("operation-comment", "");

 if (comment) {

 writeln(" " + comment);

 }

 }

 writeln("");
Using Section Variant of getParameter

4.11.2 getGlobalParameter Function

value = getGlobalParameter(name [,default]))

Arguments Description

name Parameter name.

default The value to return if the requested parameter is not defined. If a default value

is not specified and the parameter is not defined, then undefined is returned.

Some parameters are defined at the start of the intermediate file prior to the first operation. These

parameters are considered global and are accessed using the hasGlobalParameter and

getGlobalParameter functions. The same rules that apply to the operation parameters apply to global

parameters.

-1: onOpen()

0: onParameter('product-id', 'fusion360')

1: onParameter('generated-by', 'Fusion 360 CAM 2.0.3803')

2: onParameter('generated-at', 'Saturday, March 24, 2018 4:34:36 PM')

3: onParameter('hostname', 'host')

4: onParameter('username', 'user')

5: onParameter('document-path', 'Water-Laser-Plasma v2')

6: onParameter('leads-supported', 1)

7: onParameter('job-description', 'Laser')

Entry Functions 4-142

 CAM Post Processor Guide 8/8/23

9: onParameter('stock', '((0, 0, -5), (300, 200, 0))')

11: onParameter('stock-lower-x', 0)

13: onParameter('stock-lower-y', 0)

15: onParameter('stock-lower-z', -5)

17: onParameter('stock-upper-x', 300)

19: onParameter('stock-upper-y', 200)

21: onParameter('stock-upper-z', 0)

23: onParameter('part-lower-x', 0)

25: onParameter('part-lower-y', 0)

27: onParameter('part-lower-z', -5)

29: onParameter('part-upper-x', 300)

31: onParameter('part-upper-y', 200)

33: onParameter('part-upper-z', 0)

35: onParameter('notes', '')
Sample Global Variables

When processing multiple setups at the same time some of the global parameters will change from one

setup to the next. The getGlobalParameter function though will always reference the parameters of the

first setup, so if you want to access the parameters of the active setup then you will need to use the

onParameter function rather than the getGlobalParameter function.

function onParameter(name, value) {

 if (name == "job-description") {

 setupName = value;

 }

}
Using onParameter to Store the Active Setup Name

4.12 onPassThrough

Function onPassThrough (value)

Arguments Description

value Text to be output to the NC file.

The onPassThrough function is called by the Pass through Manual NC command and is used to pass a

text string directly to the NC file without any processing by the post processor. This function is

described in the Manual NC Commands chapter.

4.13 onSpindleSpeed

function onSpindleSpeed(speed) {

Arguments Description

spindleSpeed The new spindle speed in RPM.

Entry Functions 4-143

 CAM Post Processor Guide 8/8/23

The onSpindleSpeed function is used to output changes in the spindle speed during an operation,

typically from the post processor engine when expanding a cycle.

function onSpindleSpeed(spindleSpeed) {

 writeBlock(sOutput.format(spindleSpeed));

}
Sample onSpindleSpeed Function

4.14 onOrientateSpindle

function onOrientateSpindle(angle) {

Arguments Description

angle Spindle orientation angle in radians.

The onOrientateSpindle function is not typically called. When a cycle that orientates the spindle is

expanded the onCommand(COMMAND_ORIENTATE_SPINDLE) function is called.

4.15 onRadiusCompensation

function onRadiusCompensation() {

The onRadiusCompensation function is called when the radius (cutter) compensation mode changes. It

will typically set the pending compensation mode, which will be handled in the motion functions

(onRapid, onLinear, onCircular, etc.). Radius compensation, when enabled in an operation, will be

enabled on the move approaching the part and disabled after moving off the part.

The state of radius compensation is stored in the global radiusCompensation variable and is not passed

to the onRadiusCompensation function. Radius compensation is defined when creating the machining

operation in HSM (1). The Sideways Compensation (2) setting determines the side of the part that the

tool will be on when cutting. It is based on the forward direction of the tool during the cutting operation.

Entry Functions 4-144

 CAM Post Processor Guide 8/8/23

Enabling/Disabling Radius Compensation

Compensation Type Description

In computer The tool is offset from the part based on the tool diameter. The center

line of the offset tool is sent to the post processor and the radius

compensation mode is OFF (G40).

In control The tool is not offset from the part. The centerline of the tool as if it is

on the part is sent to the post processor and the radius compensation

mode is determined by the Sideways Compensation setting (G41/G42).

The control will perform the entire offsetting of the tool.

Wear The tool is offset from the part based on the tool diameter. The center

line of the offset tool is sent to the post processor and the radius

compensation mode is determined by the Sideways Compensation

setting (G41/G42). The control will compensate for tool wear.

Inverse wear Same as Wear, but the opposite compensation direction will be used

(G42/G41).

Off The tool is not offset from the part. The centerline of the tool as if it is

on the part is sent to the post processor and the radius compensation

mode will be disabled (G40).
Radius Compensation Modes

var pendingRadiusCompensation = -1;

function onRadiusCompensation() {

 pendingRadiusCompensation = radiusCompensation;

}
Sample onRadiusCompensation Function

4.16 onMovement

function onMovement(movement) {

Entry Functions 4-145

 CAM Post Processor Guide 8/8/23

Arguments Description

movement Movement type for the following motion(s).

onMovement is called whenever the movement type changes. It is used to tell the post when there is a

positioning, entry, exit, or cutting type move. There is also a movement global variable that contains the

movement setting. This variable can be referenced directly in other functions, such as onLinear, to

access the movement type without defining the onMovement function.

The supported movement types are listed in the following table.

Movement Type Description

MOVEMENT_CUTTING Standard cutting motion.

MOVEMENT_EXTENDED Extended movement type. Not common.

MOVEMENT_FINISH_CUTTING Finish cutting motion.

MOVEMENT_HIGH_FEED Movement at high feedrate. Not typically used. Rapid moves

output using a linear move at the high feedrate will use the

MOVEMENT_RAPID type.

MOVEMENT_LEAD_IN Lead-in motion.

MOVEMENT_LEAD_OUT Lead-out motion.

MOVEMENT_LINK_DIRECT Direction (non-cutting) linking move.

MOVEMENT_LINK_TRANSITION Transition (cutting) linking move.

MOVEMENT_PLUNGE Plunging move.

MOVEMENT_PREDRILL Predrilling motion.

MOVEMENT_RAMP Ramping entry motion.

MOVEMENT_RAMP_HELIX Helical ramping motion.

MOVEMENT_RAMP_PROFILE Profile ramping motion.

MOVEMENT_RAMP_ZIG_ZAG Zig-Zag ramping motion.

MOVEMENT_RAPID Rapid movement.

MOVEMENT_REDUCED Reduced cutting motion.
Movement Types

Movement types are used in defining parametric feedrates in some milling posts and for removing all

non-cutting moves for waterjet/plasma/laser machines that require only the cutting profile.

4.17 onRapid

function onRapid(_x, _y, _z) {

Arguments Description

_x, _y, _z The tool position.

The onRapid function handles rapid positioning moves (G00) while in 3-axis mode. The tool position is

passed as the _x, _y, _z arguments. The format of the onRapid function is pretty basic, it will handle a

change in radius compensation, may determine if the rapid moves should be output at a high feedrate

Entry Functions 4-146

 CAM Post Processor Guide 8/8/23

(due to the machine making dogleg moves while in rapid mode), and output the rapid move to the NC

file.

If the High feedrate mapping property is set to Always use high feed, then the onLinear function will be

called with the high feedrate passed in as the feedrate and the onRapid function will not be called.

Using High Feedrates for Positioning Moves

function onRapid(_x, _y, _z) {

 // format tool position for output

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 // ignore if tool does not move

 if (x || y || z) {

 if (pendingRadiusCompensation >= 0) { // handle radius compensation

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 // output move at high feedrate if movement in more than one axis

 if (!getProperty("useG0") && (((x ? 1 : 0) + (y ? 1 : 0) + (z ? 1 : 0)) > 1)) {

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), x, y, z,

 getFeed(highFeedrate));

 // output move in rapid mode

 } else {

 writeBlock(gMotionModal.format(0), x, y, z);

 forceFeed();

 }

 }

}
Sample onRapid Function

Entry Functions 4-147

 CAM Post Processor Guide 8/8/23

4.18 invokeOnRapid

invokeOnRapid(x, y, z);

Arguments Description

x, y, z The tool position.

It is possible that the post processor will need to generate rapid positioning moves during the processing

of the intermediate file. An example would be creating your own expanded drilling cycle. Instead of

calling onRapid with the post generated moves, it is recommended that invokeOnRapid be called

instead. This will ensure that the post engine is notified of the move and the current position is set.

invokeOnRapid will then call onRapid with the provided arguments.

4.19 onLinear

function onLinear(_x, _y, _z, feed) {

Arguments Description

_x, _y, _z The tool position.

feed The feedrate.

The onLinear function handles linear moves (G01) at a feedrate while in 3-axis mode. The tool position

is passed as the _x, _y, _z arguments. The format of the onLinear function is pretty basic, it will handle

a change in radius compensation and outputs the linear move to the NC file.

function onLinear(_x, _y, _z, feed) {

 // force move when radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 xOutput.reset();

 yOutput.reset();

 }

 // format tool position for output

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var f = getFeed(feed);

 // ignore if tool does not move

 if (x || y || z) {

 // handle radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 pendingRadiusCompensation = -1;

 var d = tool.diameterOffset;

Entry Functions 4-148

 CAM Post Processor Guide 8/8/23

 if (d > 200) {

 warning(localize("The diameter offset exceeds the maximum value."));

 }

 writeBlock(gPlaneModal.format(17));

 switch (radiusCompensation) {

 case RADIUS_COMPENSATION_LEFT:

 dOutput.reset();

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(41), x, y, z,

 dOutput.format(d), f);

 break;

 case RADIUS_COMPENSATION_RIGHT:

 dOutput.reset();

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(42), x, y, z,

 dOutput.format(d), f);

 break;

 default:

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, y, z,

 f);

 }

 // output non-compensation change move at feedrate

 } else {

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), x, y, z, f);

 }

 // no movement, but feedrate changes

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 forceFeed(); // force feed on next line

 } else {

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), f);

 }

 }

}
Sample onLinear Function

4.20 invokeOnLinear

invokeOnLinear(x, y, z, feed);

Arguments Description

x, y, z The tool position.

feed The feedrate.

It is possible that the post processor will need to generate cutting moves during the processing of the

intermediate file. An example would be creating your own expanded drilling cycle. Instead of calling

onLinear with the post generated moves, it is recommended that invokeOnLinear be called instead. This

Entry Functions 4-149

 CAM Post Processor Guide 8/8/23

will ensure that the post engine is notified of the move and the current position is set. invokeOnLinear

will then call onLinear with the provided arguments.

4.21 onRapid5D

function onRapid5D(_x, _y, _z, _a, _b, _c) {

Arguments Description

_x, _y, _z The tool position.

_a, _b, _c The rotary angles if a machine configuration has been defined, otherwise the

tool axis vector is passed.

The onRapid5D function handles rapid positioning moves (G00) in multi-axis operations. The tool

position is passed as the _x, _y, _z arguments and the rotary angles as the _a, _b, _c arguments. If a

machine configuration has not been defined, then _a, _b, _c contains the tool axis vector. The

onRapid5D function will be called for all rapid moves in a multi-axis operation, even if the move is only

a 3-axis linear move without rotary movement.

Like the onRapid function, the onRapid5D function handles a change in radius compensation, may

determine if the rapid moves should be output at a high feedrate (due to the machine making dogleg

moves while in rapid mode), and outputs the rapid move to the NC file.

function onRapid5D(_x, _y, _z, _a, _b, _c) {

 // enable this code if machine does not accept IJK tool axis vector input

 if (false) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis toolpath."));

 return;

 }

 }

 // handle radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 // Machine Configuration has been defined, output rotary angles with move

 if (currentSection.isOptimizedForMachine()) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

Entry Functions 4-150

 CAM Post Processor Guide 8/8/23

 writeBlock(gMotionModal.format(0), x, y, z, a, b, c);

 // Machine Configuration has not been defined, output tool axis with move

 } else {

 forceXYZ();

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var i = ijkFormat.format(_a);

 var j = ijkFormat.format(_b);

 var k = ijkFormat.format(_c);

 writeBlock(gMotionModal.format(0), x, y, z, "I" + i, "J" + j, "K" + k);

 }

 forceFeed();

}
Sample onRapid5D Function

Please refer to the Multi-Axis Post Processors chapter for a detailed explanation on supporting a multi-

axis machine.

4.22 invokeOnRapid5D

invokeOnRapid5D(x, y, z, a, b, c);

Arguments Description

x, y, z The tool position.

a, b, c The rotary angles if a machine configuration has been defined, otherwise the

tool axis vector is passed.

It is possible that the post processor will need to generate multi-axis rapid positioning moves during the

processing of the intermediate file. An example would be when handling the retract/reconfigure

procedure. Instead of calling onRapid5D with the post generated moves, it is recommended that

invokeOnRapid5D be called instead. This will ensure that the post engine is notified of the move and

the current position is set. invokeOnRapid5D will then call onRapid5D with the provided arguments.

4.23 onLinear5D

function onLinear5D(_x, _y, _z, _a, _b, _c, feed, feedMode) {

Arguments Description

_x, _y, _z The tool position.

_a, _b, _c The rotary angles if a machine configuration has been defined, otherwise the

tool axis vector is passed.

feed The feedrate value calculated for the multi-axis feedrate mode.

feedMode The active multi-axis feedrate mode It can be FEED_FPM,

FEED_INVERSE_TIME, or FEED_DPM.

Entry Functions 4-151

 CAM Post Processor Guide 8/8/23

The onLinear5D function handles cutting moves (G01) in multi-axis operations. The tool position is

passed as the _x, _y, _z arguments and the rotary angles as the _a, _b, _c arguments. If a machine

configuration has not been defined, then _a, _b, _c contains the tool axis vector. The onLinear5D

function will be called for all cutting moves in a multi-axis operation, even if the move is only a 3-axis

linear move without rotary movement.

It is important to know that the feedMode argument will not be present if multi-axis feedrates are not

defined either in an external Machine Configuration or within the post processor using the

setMultiAxisFeedrate function. The feed value will always be passed as the programmed feedrate in this

case.

Like the onLinear function, the onLinear5D function handles a change in radius compensation, and

outputs the cutting move to the NC file.

function onLinear5D(_x, _y, _z, _a, _b, _c, feed, feedMode) {

 // enable this code if machine does not accept IJK tool axis vector input

 if (false) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis toolpath."));

 return;

 }

 }

 // handle radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));

 return;

 }

 // Machine Configuration has been defined, output rotary angles with move

 if (currentSection.isOptimizedForMachine()) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 // get feedrate number

 if (feedMode == FEED_INVERSE_TIME) {

 feedOutput.reset();

 }

 var fMode = feedMode == FEED_INVERSE_TIME ? 93 : 94;

 var f = feedMode == FEED_INVERSE_TIME ? inverseTimeOutput.format(feed) :

 feedOutput.format(feed);

Entry Functions 4-152

 CAM Post Processor Guide 8/8/23

 // ignore if tool does not move

 if (x || y || z || a || b || c) {

 writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), x, y, z, a, b, c, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 forceFeed(); // force feed on next line

 } else {

 writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), f);

 }

 }

 // Machine Configuration has not been defined, output tool axis with move

 } else {

 forceXYZ();

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var i = ijkFormat.format(_a);

 var j = ijkFormat.format(_b);

 var k = ijkFormat.format(_c);

 var f = getFeed(feed);

 // ignore if tool does not move

 if (x || y || z || i || j || k) {

 writeBlock(gMotionModal.format(1), x, y, z, "I" + i, "J" + j, "K" + k, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 forceFeed(); // force feed on next line

 } else {

 writeBlock(gMotionModal.format(1), f);

 }

 }

 }

}
Sample onLinear5D Function

Please refer to the Multi-Axis Post Processors chapter for a detailed explanation on supporting a multi-

axis machine.

4.24 invokeOnLinear5D

invokeOnLinear5D(x, y, z, a, b, c, feed);

Arguments Description

x, y, z The tool position.

Entry Functions 4-153

 CAM Post Processor Guide 8/8/23

Arguments Description

a, b, c The rotary angles if a machine configuration has been defined, otherwise the

tool axis vector is passed.

feed The feedrate.

It is possible that the post processor will need to generate multi-axis cutting moves during the processing

of the intermediate file. An example would be when handling the retract/reconfigure procedure. Instead

of calling onLinear5D with the post generated moves, it is recommended that invokeOnLinear5D be

called instead. This will ensure that the post engine is notified of the move and the current position is

set. invokeOnLinear5D will then call onLinear5D with the provided arguments.

The post engine will calculate the proper feedrate value and mode prior to calling onLinear5D.

4.25 onCircular

function onCircular(clockwise, cx, cy, cz, x, y, z, feed) {

Argument Description

clockwise Set to true if the circular direction is in the clockwise direction, false if

counter-clockwise.

cx, cy, cz Center coordinates of circle.

x, y, z Final point on circle

feed The feedrate.

The onCircular function is called whenever there is circular, helical, or spiral motion. The circular

move can be in any of the 3 standard planes, XY-plane, YZ-plane, or ZX-plane, it is up to the

onCircular function to determine which types of circular are valid for the machine and to correctly

format the output.

The structure of the onCircular function in most posts uses the following layout.

1. Test for radius compensation. Most controls do not allow radius compensation to be started on a

circular move.

2. Full circle output.

3. Center point (IJK) output.

4. Radius output.

Each of the different styles of output will individually handle the output of circular interpolation in each

of the planes and possibly 3-D circular interpolation if it is supported.

 if (pendingRadiusCompensation >= 0) { // Disallow radius compensation

 error(localize("Radius compensation cannot be activated/deactivated for a circular move."));

 return;

 }

…

Entry Functions 4-154

 CAM Post Processor Guide 8/8/23

 if (isFullCircle()) { // Full 360 degree circles

 if (getProperty("useRadius") || isHelical()) { // radius mode does not support full arcs

 linearize(tolerance);

 return;

 }

…

 } else if (!getProperty("useRadius")) { // Incremental center point output

 switch (getCircularPlane()) {

 case PLANE_XY:

…

 } else { // Use radius mode

 var r = getCircularRadius();

 if (toDeg(getCircularSweep()) > (180 + 1e-9)) {

 r = -r; // allow up to <360 deg arcs

 }

…

Standard onCircular Structure

 switch (getCircularPlane()) {

 case PLANE_XY:

 writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), getFeed(feed));

 break;

 case PLANE_ZX:

 writeBlock(gPlaneModal.format(18), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 case PLANE_YZ:

 writeBlock(gPlaneModal.format(19), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 default: // circular record is not in major plane

 linearize(tolerance);

 }
Circular Output Based on Plane

4.25.1 Circular Interpolation Settings

There are settings that affect how circular interpolation is handled in the post engine, basically telling

the post engine when to call onCircular or when to linearize the points by calling onLinear multiple

times instead. The following table describes the circular interpolation settings.

Entry Functions 4-155

 CAM Post Processor Guide 8/8/23

Setting Description

allowedCircularPlanes Defines the standard planes that circular interpolation is allowed in,

PLANE_XY, PLANE_YZ, PLANE_ZX. It can be set to undefined to

allow circular interpolation in all three planes, 0 to disable circular

interpolation, or a bit mask of PLANE_XY, PLANE_YZ, and/or

PLANE_YZ to allow only certain planes.

allowHelicalMoves Helical interpolation is allowed when this variable is set to true. Helical

moves are linearized if set to false.

allowSpiralMoves Spiral interpolation is defined as circular moves that have a different

starting radius than ending radius and can be enabled by setting this

variable to true. Spiral moves are linearized if set to false.

maximumCircularRadius Specifies the maximum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. Any circular records whose radius

exceeds this value will be linearized. This variable must be set in

millimeters (MM).

 maximumCircularRadius = spatial(1000, MM); // 39.37 inch

maximumCircularSweep Specifies the maximum angular sweep of circular moves that can be

output as circular interpolation and is specified in radians. Any circular

records whose delta angle exceeds this value will be linearized.

minimumChordLength Specifies the minimum delta movement allowed for circular interpolation

and can be changed dynamically in the Property table when running the

post processor. Any circular records whose delta linear movement is less

than this value will be linearized. This variable must be set in millimeters

(MM).

minimumCircularRadius Specifies the minimum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. Any circular records whose radius

is less than this value will be linearized. This variable must be set in

millimeters (MM).

minimumCircularSweep Specifies the minimum angular sweep of circular moves that can be output

as circular interpolation and is specified in radians. Any circular records

whose delta angle is less than this value will be linearized.

tolerance Specifies the tolerance used to linearize circular moves that are expanded

into a series of linear moves. Circular interpolation records can be

linearized due to the conditions of the circular interpolation settings not

being met or by the linearize function being called. This variable must be

set in millimeters (MM).
Circular Interpolation Settings

allowedCircularPlanes = undefined; // allow all circular planes

allowedCircularPlanes = 0; // disable all circular planes

allowedCircularPlanes = (1 << PLANE_XY) | (1 << PLANE_ZX); // XY, ZX planes

Entry Functions 4-156

 CAM Post Processor Guide 8/8/23

tolerance = spatial(0.002, MM); // linearization tolerance of .00008 IN

minimumChordLength = spatial(0.01, MM); // minimum linear movement of .0004 IN

minimumCircularRadius = spatial(0.01, MM); // minimum circular radius of .0004 IN

maximumCircularRadius = spatial(1000, MM); // maximum circular radius of 39.37 IN

minimumCircularSweep = toRad(0.01); // minimum angular movement of .01 degrees

maximumCircularSweep = toRad(180); // circular interpolation up to 180 degrees

allowHelicalMoves = true; // enable helical interpolation

allowSpiralMoves = false; // disallow spiral interpolation
Example Circular Interpolation Settings

4.25.2 Circular Interpolation Common Functions

There are built-in functions that are utilized by the onCircular function. These functions return values

used in the onCircular function, determine if the circular record should be linearized, and control the

flow of the onCircular function logic.

Function Description

getCircularCenter() Returns the center point of the circle as a Vector.

getCircularChordLength() Returns the delta linear movement of the circular interpolation record.

getCircularNormal() Returns the normal of the circular plane as a Vector. The normal is

flipped if the circular movement is in the clockwise direction. This

follows the righthand plane convention.

getCircularPlane() Returns the plane of the circular interpolation record, PLANE_XY,

PLANE_ZX, or PLANE_YZ. If the return value is -1, then the

circular plane is not a major plane, but is in 3-D space.

getCircularRadius() Returns the end radius of the circular motion.

getCircularStartRadius() Returns the start radius of the circular motion. This will be different

than the end radius for spiral moves.

getCircularSweep() Returns the angular sweep of the circular interpolation record in

radians.

getCurrentPosition() Returns the starting point of the circular move as a Vector.

getHelicalDistance() Returns the distance the third axis will move during helical

interpolation. Returns 0 for a 2-D circular interpolation record.

getHelicalOffset() Returns the distance along the third axis as a Vector. This function is

used when helical interpolation is supported outside one of the three

standard circular planes.

getHelicalPitch() Returns the distance that the third axis travels for a full 360-degree

sweep, i.e. the pitch value of the thread.

getPositionU(u) Returns the point on the circle at u percent along the arc as a Vector.

isFullCircle() Returns true if the angular sweep of the circular motion is 360

degrees.

Entry Functions 4-157

 CAM Post Processor Guide 8/8/23

Function Description

isHelical() Returns true if the circular interpolation record contains helical

movement. The variable allowHelicalMoves must be set to true for

helical records to be passed to the onCircular function.

isSpiral() Returns true if the circular interpolation record contains spiral

movement (the start and end radii are different). The variable

allowSpiralMoves must be set to true for spiral records to be passed to

the onCircular function.

linearize(tolerance) Linearizes the circular motion by outputting a series of linear moves.
onCircular Common Functions

4.25.3 Helical Interpolation

Helical interpolation is defined as circular interpolation with movement along the third linear axis. The

third linear axis is defined as the axis that is not part of the circular plane, for example, the Z-axis is the

third linear axis for circular interpolation in the XY-plane. The variable allowHelicalMoves must be set

to true for the post processor to support helical interpolation.

Helical interpolation is typically output using the same format as circular interpolation with the addition

of the third axis and optionally a pitch value (incremental distance per 360 degrees) for the third axis.

Most stock post processors are already setup to output the third axis with circular interpolation (it won't

be output for a 2-D circular move).

 case PLANE_XY:

 writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx-start.x, 0), jOutput.format(cy-start.y, 0), kOutput.format(getHelicalPitch()),

 feedOutput.format(feed));

 break;
Helical Interpolation with Pitch Output

4.25.4 Spiral Interpolation

Spiral interpolation is defined as circular interpolation that has a different radius at start of the circular

move than the radius at the end of the move. The variable allowSpiralMoves must be set to true for the

post processor to support helical interpolation.

Spiral interpolation when supported on a control is typically specified with a G-code different than the

standard G02/G03 circular interpolation G-codes. Most stock post processors do not support spiral

interpolation.

 if (isSpiral()) {

 var startRadius = getCircularStartRadius();

 var endRadius = getCircularRadius();

 var dr = Math.abs(endRadius - startRadius);

Entry Functions 4-158

 CAM Post Processor Guide 8/8/23

 if (dr > maximumCircularRadiiDifference) { // maximum limit

 if (isHelical()) { // not supported

 linearize(tolerance);

 return;

 }

 switch (getCircularPlane()) {

 case PLANE_XY:

 writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2.1 : 3.1),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), getFeed(feed));

 break;

 case PLANE_ZX:

 writeBlock(gPlaneModal.format(18), gMotionModal.format(clockwise ? 2.1 : 3.1),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 case PLANE_YZ:

 writeBlock(gPlaneModal.format(19), gMotionModal.format(clockwise ? 2.1 : 3.1),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 default:

 linearize(tolerance);

 }

 return;

 }

 }

Spiral Interpolation Output

4.25.5 3-D Circular Interpolation

3-D circular interpolation is defined as circular interpolation that is not on a standard circular plane (XY,

ZX, YZ).

3-D circular interpolation when supported on a control is typically specified with a G-code different than

the standard G02/G03 circular interpolation G-codes and must contain either the mid-point of the

circular move and/or the normal vector of the circle. Most stock post processors do not support 3-D

circular interpolation.

 default:

 if (getProperty("allow3DArcs")) { // a post property is used to enable support of 3-D circular

 // make sure maximumCircularSweep is well below 360deg

 var ip = getPositionU(0.5); // calculate mid-point of circle

 writeBlock(gMotionModal.format(clockwise ? 2.4 : 3.4), // 3-D circular direction G-codes

Entry Functions 4-159

 CAM Post Processor Guide 8/8/23

 xOutput.format(ip.x), yOutput.format(ip.y), zOutput.format(ip.z), // output mid-point of circle

 getFeed(feed));

 writeBlock(xOutput.format(x), yOutput.format(y), zOutput.format(z)); // output end-point

 } else {

 linearize(tolerance);

 }

 }
3-D Circular Interpolation Output

4.26 invokeOnCircular

invokeOnCircular(clockwise, cx, cy, cz, x, y, z, i, j, k, feed);

Arguments Description

clockwise Set to true if the direction of the circular is in the clockwise direction, false if it

is counter-clockwise.

cx, cy, cz The center of the circle.

x, y, z The tool position.

i, j, k The normal vector of the circle.

feed The feedrate.

It is possible that the post processor will need to generate circular arcs during the processing of the

intermediate file. To do this invokeOnCircular can be called. Calling invokeOnCircular ensures that

the post engine is notified of the arc move and the current position is set. invokeOnCircular will then

call onCircular with the provided arguments and setting the proper circular variables.

4.27 onCycle

function onCycle() {

The onCycle function is called once at the beginning of an operation that contains a canned cycle and

can contain code to prepare the machine for the cycle. Mill post processors will typically set the

machining plane here.

function onCycle() {

 writeBlock(gPlaneModal.format(17));

}
Sample onCycle Function

Mill/Turn post processors will usually handle the stock transfer sequence in the onCycle function. Logic

for the Mill/Turn post processors will be discussed in a dedicated chapter.

4.28 onCyclePoint

function onCyclePoint(x, y, z) {

Entry Functions 4-160

 CAM Post Processor Guide 8/8/23

Argument Description

x, y, z Hole bottom location.

Canned cycle output is handled in the onCyclePoint function, which includes positioning to the

clearance plane, formatting of the cycle block, calculating the cycle parameters, discerning if the canned

cycle is supported on the machine or should be expanded, and probing cycles which will not be

discussed in this chapter.

The location of the hole bottom for the cycle is passed in as the x, y, z arguments to the onCyclePoint

function. All other parameters are available in the cycle object or through cycle specific function calls.

The flow of outputting canned cycles usually follows the following logic.

1. First hole location in cycle

a. Position to clearance plane

b. Canned cycle is supported on machine

i. Calculate common cycle parameters

ii. Format and output canned cycle

c. Canned cycle is not supported on machine

i. Expand cycle into linear moves

2. 2nd through nth holes

a. Cycle is not expanded

i. Output hole location

b. Cycle is expanded

i. Expand cycle at new location

The actual output of the cycle blocks is handled in a switch block, with a separate case for each of the

supported cycles.

 switch (cycleType) {

 case "drilling":

 writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(81),

 getCommonCycle(x, y, z, cycle.retract),

 feedOutput.format(F)

);

 break;
Sample Cycle Formatting Code

If a cycle is not supported and needs to be expanded by the post engine, then you can either remove the

entire case block for this cycle and it will be handled in the default block, or you can specifically expand

the cycle. The second method is handy when the canned cycle does not support all of the parameters

available in HSM, for example if a dwell is not supported for a deep drilling cycle on the machine, but

you want to be able to use a dwell.

 case "deep-drilling":

 if (P > 0) { // the machine does not support a dwell code, so expand the cycle

Entry Functions 4-161

 CAM Post Processor Guide 8/8/23

 expandCyclePoint(x, y, z);

 } else {

 writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(83),

 getCommonCycle(x, y, z, cycle.retract),

 "Q" + xyzFormat.format(cycle.incrementalDepth),

 feedOutput.format(F)

);

 }

 break;
 Expanding a Cycle When a Feature is not Support on the Machine

The 2nd through the nth locations in a cycle operation are typically output using simple XY moves

without any of the cycle definition codes. Expanded cycles still need to be expanded at these locations.

 } else { // end of isFirstCyclePoint() condition

 if (cycleExpanded) {

 expandCyclePoint(x, y, z);

 } else {

 var _x = xOutput.format(x);

 var _y = yOutput.format(y);

 if (!_x && !_y) {

 xOutput.reset(); // at least one axis is required

 _x = xOutput.format(x);

 }

 writeBlock(_x, _y);

 }

 }
Output the 2nd through nth Cycle Locations

4.28.1 Drilling Cycle Types

The following table contains the drilling (hole making cycles). The cycle type is stored in the cycleType

variable as a text string. The standard G-code used for the cycle is included in the description, where

expanded defines the cycle as usually not being supported on the machine and expanded instead.

cycleType Description

drilling Feed in to depth and rapid out (G81)

counter-boring Feed in to depth, dwell, and rapid out (G82)

chip-breaking Multiple pecks with periodic partial retract to clear chips (G73)

deep-drilling Peck drilling with full retraction at end of each peck (G83)

break-through-drilling Allows for reduced speed and feed before breaking through hole

(expanded)

gun-drilling Guided deep drilling allows for a change in spindle speed for

positioning (expanded)

Entry Functions 4-162

 CAM Post Processor Guide 8/8/23

cycleType Description

tapping Feed in to depth, reverse spindle, optional dwell, and feed out.

Automatically determines left or right tapping depending on the tool

selected. (G74/G84)

left-tapping Left-handed tapping (G74)

right-tapping Right-handed tapping (G84)

tapping-with-chip-breaking Tapping with multiple pecks. Automatically determines left or right

tapping depending on the tool selected. (expanded)

reaming Feed in to depth and feed out (G85)

boring Feed in to depth, dwell, and feed out (G86)

stop-boring Feed to depth, stop the spindle, and feed out (G87)

fine-boring Feed to depth, orientate the spindle, shift from wall, and rapid out

(G76)

back-boring Orientate the spindle, rapid to depth, start spindle, shift the tool to

wall, feed up to bore height, orientate spindle, shift from wall, and

rapid out (G77)

circular-pocket-milling Mills out a hole (expanded)

thread-milling Helical thread cutting (expanded)
Types of Drilling Cycles

Any of these cycles can be expanded if the machine control does not support the specific cycle. There

are some caveats, where the post (and machine) must support certain capabilities for the expanded cycle

to run correctly on the machine. The following table lists the commands that must be defined in the

onCommand function to support the expansion of these cycles. It is expected that the machine will

support these features if they are enabled in the post processor.

cycleType Supported onCommand Command

tapping

left-tapping

right-tapping

tapping-with-chip-breaking

COMMAND_SPINDLE_CLOCKWISE

COMMAND_SPINDLE_COUNTERCLOCKWISE

COMMAND_ACTIVATE_SPEED_FEED_SYNCHRONIZATION

COMMAND_DEACTIVATE_SPEED_FEED_SYNCHRONIZATION

stop-boring COMMAND_STOP_SPINDLE

COMMAND_START_SPINDLE

fine-boring

back-boring

COMMAND_STOP_SPINDLE

COMMAND_START_SPINDLE

COMMAND_ORIENTATE_SPINDLE
Required Command Support for Expanded Cycles

Certain cycles will use the following parameters when they are expanded.

machineParameters. Description

drillingSafeDistance

Specifies the safety distance above the stock when repositioning into

the hole for the chip-breaking and deep-drilling cycles.

spindleOrientation The spindle orientation angle after orientating the spindle.

spindleSpeedDwell Dwell in seconds after the spindle speed changes during a cycle.

Entry Functions 4-163

 CAM Post Processor Guide 8/8/23

Parameters for Expanded Cycles

You define the expanded cycle parameters using the following syntaxes.

machineParameters.drillingSafeDistance = toPreciseUnit(2, MM);

machineParameters.spindleOrientation = 0;

machineParameters.spindleSpeedDwell = 1.5;
Defining Expanded Cycles Parameters

4.28.2 Cycle parameters

The parameters defined in the cycle operation are passed to the cycle functions using the cycle object.

The following variables are available and are referenced as 'cycle.parameter'.

Parameter Description

accumulatedDepth The depth of the combined cuts before the tool will be fully retracted

during a chip-breaking cycle.

backBoreDistance The cutting distance of a back-boring cycle.

bottom The bottom of the hole.

breakThroughDistance The distance above the hole bottom to switch to the break-through

feedrate and spindle speed during a break-through-drilling cycle.

breakThroughFeedRate The feedrate used when breaking through the hole during a break-

through-drilling cycle.

breakThroughSpindleSpeed The spindle speed used when breaking through the hole during a

break-through-drilling cycle.

chipBreakDistance The distance to retract the tool to break the chip during a chip-

breaking cycle.

clearance Clearance plane where to tool will retract the tool to after drilling a

hole and position to the next hole.

compensation Radius compensation in effect for circular-pocket-milling and thread-

milling cycles. This value can be control, wear, and inverseWear.

compensationShiftOrientation Same as shiftOrientation.

depth The depth of the hole.

diameter The diameter of the hole for circular-pocket-milling and thread-

milling cycles.

direction Either climb or conventional milling for circular-pocket-milling and

thread-milling cycles.

dwell The dwell time in seconds.

dwellDepth The distance above the cut depth at which to dwell, used for gun-

drilling cycles.

feedrate The primary cutting feedrate.

incrementalDepth The incremental pecking depth of the first cut.

incrementalDepthReduction The incremental pecking depth reduction per cut for pecking cycles.

minimumIncrementalDepth The minimum pecking depth of cut for pecking cycles.

numberOfSteps The number of horizontal passes for the thread-milling cycle.

Entry Functions 4-164

 CAM Post Processor Guide 8/8/23

Parameter Description

plungeFeedrate The cutting feedrate. The same as feedrate.

plungesPerRetract The number of cuts before the tool will be fully retracted during a

chip-breaking cycle.

postioningFeedrate The feedrate used to position the tool during a gun-drilling cycle.

positioningSpindleSpeed The spindle speed used when positioning the tool during a gun-

drilling cycle.

repeatPass Set to true if the final pass should be repeated for circular-pocket-

milling and thread-milling cycles.

retract The plane where the tool will position to prior to starting the cycle

(feeding into the hole).

retractFeedrate The tool retraction feedrate, used when feeding out of the hole.

shift The distance to shift the tool away from the wall during a fine-boring

and back-boring cycle.

shiftDirection The direction in radians to shift the tool away from the wall during a

fine-boring and back-boring cycle. The shift direction will be PI

radians (180 degrees) from the wall plus this amount.

shiftOrientation The spindle orientation of the tool in radians when shifting the tool

away from the wall during a fine-boring or back-boring cycle.

stepover The horizontal stepover distance for circular-pocket-milling and

thread-milling cycles.

stock The top of the hole.

stopSpindle When set to 1, the spindle will be stopped during

positioning/retracting in a gun-drilling cycle.

threading Either right or left-handed threading for thread-milling cycles.
Cycle Parameters

4.28.3 The Cycle Planes/Heights

The drilling cycles use different heights during the execution of the cycle. These heights are specified in

the Heights tab for the Drilling operation. One thing you should keep in mind is that the names given to

these heights do not match the cycle parameter names in the post processor. The following table gives

the relationship between the HSM height names and the equivalent cycle parameter names.

Operation Heights Tab Cycle Parameter Description

Clearance Height (none) The plane to position to the

first point of the cycle and to

retract the tool to after the

final point of the cycle.

Retract Height cycle.clearance The tool rapids to this plane

from the clearance height

and will position between the

holes at this height.

Feed Height cycle.retract The tool will feed from this

plane into the hole.

Entry Functions 4-165

 CAM Post Processor Guide 8/8/23

Operation Heights Tab Cycle Parameter Description

Top Height cycle.stock The top of the hole.

Bottom Height cycle.bottom The bottom of the hole. This

height is the plane where the

tool will drill to and will be

different from the actual

bottom of the hole if the

Drill tip through bottom box

is checked.
Correlation Between Cycle Operation Heights and Cycle Parameters

HSM assumes that the tool will always be retracted to the Retract Height (cycle.clearance) between

holes, you will notice this in the simulation of the cycle in HSM. This is typically handled in the

machine control with a G98 (Retract to clearance plane) code. Of course this code can be different from

machine control to machine control and there are controls that will always retract to the Feed Height

(cycle.retract) at the end of a drilling operation. In this case it is up to the post processor to retract the

tool to the Retract Height.

You can cancel the cycle at the end of the onCyclePoint function and output a tool retract block to take

the tool back up to the Retract Height. When this method is used it is also mandatory that the full cycle

be output for every hole in the operation and not just the first cycle point. Some machines support a

retract plane to be specified with the cancel cycle code, i.e. G80 Rxxx.

function onCyclePoint(x, y, z) {

 // if (isFirstCyclePoint()) {

 if (true) { // output a full cycle block for every hole in the operation

 repositionToCycleClearance(cycle, x, y, z);

...

...

 default:

 expandCyclePoint(x, y, z);

 }

 // retract tool (add at the end of the cycleType switch code)

 gMotionModal.format.reset();

 writeBlock(gCycleModal.format(80), gMotionModal.format(0), zOutput.format(cycle.clearance));

 } else {

 if (cycleExpanded) {
Retracting the Tool to the Retract Plane when Unsupported by Machine Control

4.28.4 Common Cycle Functions

There are functions that are commonly used in the onCyclePoint function. The following table lists

these functions.

Entry Functions 4-166

 CAM Post Processor Guide 8/8/23

Function Description

isFirstCyclePoint() Returns true if this is the first point in the cycle operation. It is

usually called to determine whether to output a full cycle block or

just the cycle location.

isLastCyclePoint() Returns true if this is the last point in the cycle operation. This

function is typically used for a lathe threading operation since

HSM sends a single pass to the onCyclePoint function and the full

depth of the thread is required to output a single threading block.

onCycleEnd is used to terminate a drilling cycle, so this function is

not typically used in drilling cycles.

isProbingCycle() Returns true if this is a probing cycle.

repositionToCycleClearance() Moves the tool to the Retract Height plane (cycle.clearance). This

function is typically called prior to outputting a full cycle block.

getCommonCycle(x, y, z, r) Formats the common cycle parameters (X, Y, Z, R) for output.
Common Cycle Functions

These functions are built into the post engine, except the getCommonCycle function, which is contained

in the post processor. It takes the cycle location (x, y, z) and the retract plane/distance (r) as arguments.

Some machines require that the retract value be programmed as a distance from the current location

rather than as an absolute position. There are two ways to accomplish this. You can pass in the distance

as the retract value.

function getCommonCycle(x, y, z, r) {

 forceXYZ();

 return [xOutput.format(x), yOutput.format(y),

 zOutput.format(z),

 "R" + xyzFormat.format(r)];

}

…

 case "drilling":

 writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(81),

 getCommonCycle(x, y, z, cycle.retract – cycle.clearance),

 feedOutput.format(F)

);

 break;
Pass Retract Distance to Standard getCommonCycle Function

Or you can pass the clearance plane in to the getCommonCycle function and have it calculate the

distance. This method is typically used in post processors that support subprograms that require a retract

plane while in absolute mode and a distance when in incremental mode.

function getCommonCycle(x, y, z, r, c) {

 forceXYZ(); // force xyz on first drill hole of any cycle

 if (incrementalMode) {

 zOutput.format(c);

Entry Functions 4-167

 CAM Post Processor Guide 8/8/23

 return [xOutput.format(x), yOutput.format(y),

 "Z" + xyzFormat.format(z - r),

 "R" + xyzFormat.format(r - c)];

 } else {

 return [xOutput.format(x), yOutput.format(y),

 zOutput.format(z),

 "R" + xyzFormat.format(r)];

 }

}

…

 case "drilling":

 writeBlock(

 gRetractModal.format(98), gCycleModal.format(81),

 getCommonCycle(x, y, z, cycle.retract, cycle.clearance),

 feedOutput.format(F)

);

 break;
Pass Retract and Clearance Heights to getCommonCycle Function

4.28.5 Pitch Output with Tapping Cycles

Tapping cycles can be sometimes be output with a standard FPM feedrate, sometimes with a thread

pitch, and sometimes using the FPR feedrate mode. There are different variables and formats involved

depending on the format used. When using pitch or FPR feedrates you will need to create a format for

this style of feedrate. The format is defined at the top of the post processor with the rest of the format

definitions. Refer to the Format Defintions and Output Variable Definitions sections.

var feedFormat = createFormat({decimals:(unit == MM ? 0 : 1), forceDecimal:true});

var pitchFormat = createFormat({decimals:(unit == MM ? 3 : 4), forceDecimal:true});

…

var feedOutput = createVariable({prefix:"F"}, feedFormat);

var pitchOutput = createVariable({prefix:"F", force:true}, pitchFormat);
Create the Pitch Output Format

In the tapping sections of the onCyclePoint function you will need to assign the correct pitch value to the

output. The tapping pitch is stored in the tool.threadPitch variable.

 case "tapping":

 writeBlock(

 gRetractModal.format(98), gCycleModal.format((84),

 getCommonCycle(x, y, z, cycle.retract),

 (conditional(P > 0, "P" + milliFormat.format(P)),

 pitchOutput.format(tool.threadPitch)

);

 forceFeed(); // force the feedrate to be output after a tapping cycle with pitch output

 break;

Entry Functions 4-168

 CAM Post Processor Guide 8/8/23

Output the Thread Pitch on a Tapping Cycle

If the tapping cycle requires that the machine be placed in FPR mode, then you can also calculate the

pitch value by dividing the feedrate by the spindle speed. You will also need to output the FPR code

(G95) with the tapping cycle and reset it at the end of the tapping operation, usually in the onCycleEnd

function.

case "tapping":

 var F = cycle.feedrate / spindleSpeed;

 writeBlock(

 gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format((84),

 getCommonCycle(x, y, z, cycle.retract),

 (conditional(P > 0, "P" + milliFormat.format(P)),

 pitchOutput.format(F)

);

 forceFeed(); // force the feedrate to be output after a tapping cycle with pitch output

 break;
Output the Feedrate as FPR on a Tapping Cycle

4.29 onCycleEnd

function onCycleEnd() {

The onCycleEnd function is called after all points in the cycle operation have been processed. The cycle

is cancelled in this function and the feedrate mode (FPM) is reset if it is a tapping operation that uses

FPR feedrates.

function onCycleEnd() {

 if (!cycleExpanded) {

 writeBlock(gCycleModal.format(80));

 // writeBlock(gFeedModeModal.format(94)), gCycleModal.format(80)); // reset FPM mode

 zOutput.reset();

 }

}
onCycleEnd Function

4.30 onRewindMachine

function onRewindMachine(_a, _b, _c) {

Argument Description

_a, _b, _c Rotary axes rewind positions.

Entry Functions 4-169

 CAM Post Processor Guide 8/8/23

The onRewindMachine function is used to reposition the rotary axes when a machine limit is reached. It

is described in detail in the Rewinding of the Rotary Axis when Limits are Reached section of this

manual.

4.31 Common Functions

There are functions that are common in most of the generic posts. Some of these functions are used in

conjuction with other post processor functions and are described in the appropriate section of this

manual, for example the formatComment function is described with the onComment function. This

section describes the common functions that are generic in nature and used throughout the post

processor.

4.31.1 writeln

writeln(text);

Arguments Description

text Text to output to the NC file

The writeln function is built into the post engine and is not defined in the post processor. It is used to

output text to the NC file without formatting it. Text can be a quoted text string or a text expression.

writeln is typically used for outputting text strings that don't require formatting, or debug messages.

writeln("%"); // outputs '%'

writeln("Vector = " + new Vector(x, y, z)); // outputs the x, y, z variables in vector format

writeln(""); // outputs a blank line

writeln(formatComment("Load tool " + tool.number + " in spindle");

 // outputs 'Load tool n in spindle' as a comment
Sample writeln Calls

4.31.2 writeBlock

function writeBlock(arguments) {

Arguments Description

arguments Comma separated list of codes/text to output.

The writeBlock function writes a block of codes to the output NC file. It will add a sequence number to

the block, if sequence numbers are enabled and add an optional skip character if this is an optional

operation. A list of formatted codes and/or text strings are passed to the writeBlock function. The code

list is separated by commas, so that each code is passed as an individual argument, which allows for the

codes to be separated by the word separator defined by the setWordSeparator function.

/**

 Writes the specified block.

Entry Functions 4-170

 CAM Post Processor Guide 8/8/23

*/

function writeBlock() {

 var text = formatWords(arguments);

 if (!text) {

 return;

 }

 if (getProperty("showSequenceNumbers")) { // add sequence numbers to output blocks

 if (optionalSection) {

 if (text) {

 writeWords("/", "N" + sequenceNumber, text);

 }

 } else {

 writeWords2("N" + sequenceNumber, text);

 }

 sequenceNumber += getProperty("sequenceNumberIncrement");

 } else { // no sequence numbers

 if (optionalSection) {

 writeWords2("/", text);

 } else {

 writeWords(text);

 }

 }

}
Sample writeBlock Function

writeBlock(gAbsIncModal.format(90), xFormat.format(x), yFormat.format(y));

writeBlock("G28", "X" + xFormat.format(0), "Y" + yFormat.format(0)); // outputs 'G28 X0 Y0'

writeBlock("G28" + "X" + xFormat.format(0) + "Y" + yFormat.format(0)); // outputs 'G28 X0Y0'
Sample writeBlock Calls

The writeBlock function does not usually have to be modified.

4.31.3 toPreciseUnit

toPreciseUnit(value, units);

Arguments Description

value The input value.

units The units that the value is given in, either MM or IN.

The toPreciseUnit function allows you to specify a value in a given units and that value will be returned

in the active units of the input intermediate CNC file. When developing a post processor, it is highly

recommended that any unit based hard coded numbers use the toPreciseUnit function when defining the

number.

Entry Functions 4-171

 CAM Post Processor Guide 8/8/23

yAxisMinimum = toPreciseUnit(gotYAxis ? -50.8 : 0, MM); // minimum range for the Y-axis

yAxisMaximum = toPreciseUnit(gotYAxis ? 50.8 : 0, MM); // maximum range for the Y-axis

xAxisMinimum = toPreciseUnit(0, MM); // maximum range for the X-axis (radius mode)
Defining Values using toPreciseUnit

4.31.4 force---

The force functions are used to force the output of the specified axes and/or feedrate the next time they

are supposed to be output, even if it has the same value as the previous value.

Function Description

forceXYZ Forces the output of the linear axes (X, Y, Z) on the next motion block.

forceABC Forces the output of the rotary axes (A, B, C) on the next motion block.

forceFeed Forces the output of the feedrate on the next motion block.

forceAny Forces all axes and the feedrate on the next motion block.
Force Functions

/** Force output of X, Y, and Z on next output. */

function forceXYZ() {

 xOutput.reset();

 yOutput.reset();

 zOutput.reset();

}

/** Force output of A, B, and C on next output. */

function forceABC() {

 aOutput.reset();

 bOutput.reset();

 cOutput.reset();

}

/** Force output of F on next output. */

function forceFeed() {

 currentFeedId = undefined;

 feedOutput.reset();

}

/** Force output of X, Y, Z, A, B, C, and F on next output. */

function forceAny() {

 forceXYZ();

 forceABC();

 forceFeed();

}
Sample Force Functions

Entry Functions 4-172

 CAM Post Processor Guide 8/8/23

4.31.5 writeRetract

function writeRetract(arguments) {

Arguments Description

arguments X, Y, and/or Z. Separated by commas when multiple axes are specified.

The writeRetract function is used to retract the Z-axis to its clearance plane and move the X and Y axes

to their home positions.

The writeRetract function can be called with one or more axes to move to their home position. The axes

are specified using their standard names of X, Y, Z, and are separated by commas if multiple axes are

specified in the call to writeRetract.

writeRetract(Z); // move the Z-axis to its home position

writeRetract(X, Y); // move the X and Y axes to their home positions
Sample writeRetract Calls

The writeRetract function is not generic in nature and may have to be changed to match your machine's

requirements. For example, some machines use a G28 to move an axis to its home position, some will

use a G53 with the home position, and some use a standard G00 block.

/** Output block to do safe retract and/or move to home position. */

function writeRetract() {

 // initialize routine

 var _xyzMoved = new Array(false, false, false);

 var _useG28 = getProperty("useG28"); // can be either true or false

 // check syntax of call

 if (arguments.length == 0) {

 error(localize("No axis specified for writeRetract()."));

 return;

 }

 for (var i = 0; i < arguments.length; ++i) {

 if ((arguments[i] < 0) || (arguments[i] > 2)) {

 error(localize("Bad axis specified for writeRetract()."));

 return;

 }

 if (_xyzMoved[arguments[i]]) {

 error(localize("Cannot retract the same axis twice in one line"));

 return;

 }

 _xyzMoved[arguments[i]] = true;

 }

 // special conditions

Entry Functions 4-173

 CAM Post Processor Guide 8/8/23

 if (_useG28 && _xyzMoved[2] && (_xyzMoved[0] || _xyzMoved[1])) { // XY don't use G28

 error(localize("You cannot move home in XY & Z in the same block."));

 return;

 }

 if (_xyzMoved[0] || _xyzMoved[1]) {

 _useG28 = false;

 }

 // define home positions

 var _xHome;

 var _yHome;

 var _zHome;

 if (_useG28) {

 _xHome = 0;

 _yHome = 0;

 _zHome = 0;

 } else {

 if (getProperty("homePositionCenter") &&

 hasParameter("part-upper-x") && hasParameter("part-lower-x")) {

 _xHome = (getParameter("part-upper-x") + getParameter("part-lower-x")) / 2;

 } else {

 _xHome = machineConfiguration.hasHomePositionX() ?

machineConfiguration.getHomePositionX() : 0;

 }

 _yHome = machineConfiguration.hasHomePositionY() ?

machineConfiguration.getHomePositionY() : 0;

 _zHome = machineConfiguration.getRetractPlane();

 }

 // format home positions

 var words = []; // store all retracted axes in an array

 for (var i = 0; i < arguments.length; ++i) {

 // define the axes to move

 switch (arguments[i]) {

 case X:

 // special conditions

 if (getProperty("homePositionCenter")) { // output X in standard block by itself if centering

 writeBlock(gMotionModal.format(0), xOutput.format(_xHome));

 _xyzMoved[0] = false;

 break;

 }

 words.push("X" + xyzFormat.format(_xHome));

 break;

 case Y:

 words.push("Y" + xyzFormat.format(_yHome));

 break;

Manual NC Commands 5-174

 CAM Post Processor Guide 8/8/23

 case Z:

 words.push("Z" + xyzFormat.format(_zHome));

 retracted = true;

 break;

 }

 }

 // output move to home

 if (words.length > 0) {

 if (_useG28) { // use G28 to move to home position

 gAbsIncModal.reset();

 writeBlock(gFormat.format(28), gAbsIncModal.format(91), words);

 writeBlock(gAbsIncModal.format(90));

 } else { // use G53 to move to home position

 gMotionModal.reset();

 writeBlock(gAbsIncModal.format(90), gFormat.format(53), gMotionModal.format(0), words);

 }

 // force any axes that move to home on next block

 if (_xyzMoved[0]) {

 xOutput.reset();

 }

 if (_xyzMoved[1]) {

 yOutput.reset();

 }

 if (_xyzMoved[2]) {

 zOutput.reset();

 }

 }

}
Sample writeRetract Function

5 Manual NC Commands
Manual NC commands are used to control the behavior of individual operations when there is not a

setting in the operation form for controlling a specific feature of a control. You can use Manual NC

commands to display a message, insert codes into the output NC file, perform an optional stop, define a

setting, etc. The Manual NC menu is accessed from different areas of the ribbon menu depending on the

product you are running.

Manual NC Commands 5-175

 CAM Post Processor Guide 8/8/23

Selecting a Manual NC Command in the HSM Products (Fusion 360, Inventor, HSMWorks)

Once you select the Manual NC menu you will see a form displayed that is used to select the type of

Manual NC command that you want to pass to the post processor and optionally the parameter that will

be passed with the command.

Defining a Manual NC Command

If you use a Manual NC command in your part, then it is necessary that the post processor is equipped to

handle this command. Some of the commands are supported by the stock post processors, such as Stop,

Optional stop, and Dwell, while support would have to be added to the post processor to support other

Manual NC commands. If you use a Manual NC command that is not supported by the post, then it will

either generate an error or be ignored. The general rule is it will generate an error if the onCommand

function is called and will be ignored when another function is called.

5.1 onManualNC and expandManualNC

function onManualNC(command, value) {

expandManualNC(command, value)

Arguments Description

command The Manual NC command that invoked the function.

value The value entered with the command.

Manual NC Commands 5-176

 CAM Post Processor Guide 8/8/23

The onManualNC function is defined in the post processor and is used to process Manual NC

commands. It accepts the command and the value that is assigned to the command. If the onManualNC

function is not defined in the post processor, then a separate function will be called as listed in the table

below.

The expandManualNC command can also be used to process the Manual NC command using the

separate functions listed in the table. It is typically used as the default condition in the onManualNC

function to process commands where you do not care if they are entered as a Manual NC command or

from an internal call in the post processor.

The following table describes the Manual NC commands along with the function that will be called

when the command is processed when the onManualNC function does not exist or expandManualNC is

called.

Manual NC

Command

Description Command Value Function Called

Comment Operator message COMMAND_COMMENT message onComment

Stop Machine stop COMMAND_STOP onCommand

Optional

Stop

Optional stop COMMAND_OPTIONAL_STOP onCommand

Dwell Dwell COMMAND_DWELL Dwell time

in seconds

onDwell

Tool break

control

Check for tool

breakage

COMMAND_BREAK_CONTROL onCommand

Measure tool Automatically

measure tool

length

COMMAND_TOOL_MEASURE onCommand

Start chip

transport

Start chip

conveyor

COMMAND_START_CHIP_TRANSPORT onCommand

Stop chip

transport

Stop chip

conveyor

COMMAND_STOP_CHIP_TRANSPORT onCommand

Open door Open main door COMMAND_OPEN_DOOR onCommand

Close door Close main door COMMAND_CLOSE_DOOR onCommand

Calibrate Calibration of

machine

COMMAND_CALIBRATE onCommand

Verify Verify integrity of

machine

COMMAND_VERIFY onCommand

Clean Request a cleaning

cycle

COMMAND_CLEAN onCommand

Action User defined

action

COMMAND_ACTION text onParameter

Print

message

Print a message

from the machine

COMMAND_PRINT_MESSAGE message onParameter

Display

message

Display operator

message

COMMAND_DISPLAY_MESSAGE message onParameter

Manual NC Commands 5-177

 CAM Post Processor Guide 8/8/23

Manual NC

Command

Description Command Value Function Called

Alarm Create an alarm on

the machine

COMMAND_ALARM onCommand

Alert Request an alert

event on the

machine

COMMAND_ALERT onCommand

Pass through Output literal text

to NC file

COMMAND_PASS_THROUGH text onPassThrough

Force tool

change

Force a tool

change

section.getForceToolChange() (none)

Call program Call a subprogram COMMAND_CALL_PROGRAM text onParameter
Manual NC Commands

5.1.1 Sample onManualNC Function

The onManualNC function is a recent addition to the post processor and will not be found in most

generic post processors. You do not have to define it to process Manual NC commands, and if it is

defined, do not need to process all Manual NC commands in this function. It could be used to process

only the commands where you need to know if they were generated from a CAM Manual NC command

instead of a direct call from within the post processor.

For example, the following onManualNC function definition could be used to process comments entered

using the CAM Manual NC command differently than comments generated from the post processor. It

simply appends the text ‘MSG,’ prior to the comment for a Manual NC Display comment command. All

other Manual NC commands are processed normally.

function onManualNC(command, value) {

 switch (command) {

 case COMMAND_DISPLAY_MESSAGE:

 writeComment("MSG, " + value);

 break;

 default:

 expandManualNC(command, value); // normal processing of Manual NC command

 }

}
Handling of Display Message Command in onManualNC

5.1.2 Delay Processing of Manual NC Commands

Manual NC commands are processed at the placement in the operation tree where they are entered,

which means that they will be processed prior to the call to onSection. Since onSection typically

terminates the previous operation prior to starting the new operation, this might not be the desirable

location to process the Manual NC command.

Manual NC Commands 5-178

 CAM Post Processor Guide 8/8/23

The following code examples show how Manual NC commands can be buffered and output at any point

during the operation. You can simply copy the onManualNC and executeManualNC functions into your

post processor and add the appropriate call(s) to executeManualNC where you want to process the

Manual NC commands.

/**

 Buffer Manual NC commands for processing later

*/

var manualNC = [];

function onManualNC(command, value) {

 manualNC.push({command:command, value:value});

}

/**

 Processes the Manual NC commands

 Pass the desired command to process or leave argument list blank to process all buffered

commands

*/

function executeManualNC(command) {

 for (var i = 0; i < manualNC.length; ++i) {

 if (!command || (command == manualNC[i].command)) {

 switch(manualNC[i].command) {

 case COMMAND_DISPLAY_MESSAGE:

 writeComment("MSG, " + manualNC[i].value);

 break;

 default:

 expandManualNC(manualNC[i].command, manualNC[i].value);

 }

 }

 }

 for (var i = manualNC.length -1; i >= 0; --i) {

 if (!command || (command == manualNC[i].command)) {

 manualNC.splice(i, 1);

 }

 }

}
Manual NC Commands Support Functions

The calls to process the Manual NC commands can be placed anywhere in the post processor. In the

following code example, the COMMAND_DISPLAY_MESSAGE command is processed just before

the tool change block is output and the rest of the Manual NC commands after the tool change block.

 executeManualNC(COMMAND_DISPLAY_MESSAGE); // display Manual NC message

 writeBlock("T" + toolFormat.format(tool.number), mFormat.format(6));

 if (tool.comment) {

 writeComment(tool.comment);

Manual NC Commands 5-179

 CAM Post Processor Guide 8/8/23

 }

 executeManualNC(); // process remaining Manual NC commands
Processing of Manual NC Commands in the Desired Location

The following sections give a description of the functions that are called by the Manual NC commands

outside of the onManualNC function and samples on how they are handled in the functions. The

onComment and onDwell functions are described in the Entry Functions chapter, since they are simple

functions and behave in the same manner no matter how they are called.

5.2 onCommand

function onCommand(command) {

Arguments Description

command Command to process.

All Manual NC commands that do not require an associated parameter are passed to the onCommand

function and as you see from the Manual NC Commands table, this entails the majority of the

commands. The onCommand function also handles other commands that are not generated by a Manual

NC command and these are described in the onCommand section in the Entry Functions chapter.

// define commands that output a single M-code

var mapCommand = {

 COMMAND_STOP:0,

 COMMAND_OPTIONAL_STOP:1,

 COMMAND_START_CHIP_TRANSPORT:31,

 COMMAND_STOP_CHIP_TRANSPORT:33

 …

};

function onCommand(command) {

 switch (command) {

 …

 case COMMAND_BREAK_CONTROL: // handle the 'Tool break' command

 if (!toolChecked) { // avoid duplicate COMMAND_BREAK_CONTROL

 onCommand(COMMAND_STOP_SPINDLE);

 onCommand(COMMAND_COOLANT_OFF);

 writeBlock(

 gFormat.format(65),

 "P" + 9853,

 "T" + toolFormat.format(tool.number),

 "B" + xyzFormat.format(0),

 "H" + xyzFormat.format(getProperty("toolBreakageTolerance"))

);

 toolChecked = true;

 }

Manual NC Commands 5-180

 CAM Post Processor Guide 8/8/23

 return;

 case COMMAND_TOOL_MEASURE: // ignore tool measurements

 return;

 }

 // handle commands that output a single M-code

 var stringId = getCommandStringId(command);

 var mcode = mapCommand[stringId];

 if (mcode != undefined) {

 writeBlock(mFormat.format(mcode));

 } else {

 onUnsupportedCommand(command);

 }

}

Handling Manual NC Commands in the onCommand Function

5.3 onParameter

function onParameter(name, value) {

Arguments Description

name Parameter name.

value Value stored in the parameter.

The onParameter function is not only called for all parameters defined in the intermediate file (see the

many calls to onParameter in the dump.cps post processor output) it also handles the Action, Call

program, Display message, and Print message Manual NC commands. It is passed both the name of the

parameter being defined and the text string associated with that parameter.

Manual NC Command Name Value

Action action text

Call program call-subprogram text

Display message display text

Print message Print text
 Manual NC Commands Handled in onParameter

This section will describe how the Action command can be used, since this is the most commonly used

of these commands.

The Action command is typically used to define post processor settings, similar to the post properties

defined at the top of the post processor, except that the settings defined using this command typically

only apply to a single operation. Since the HSM operations are executed in the order that they are

defined in the CAM tree, the Manual NC command will always be processed prior to the operation that

they precede. You can also use the Action command to define a setting so that the command can be

Manual NC Commands 5-181

 CAM Post Processor Guide 8/8/23

executed within another section of the post, by referencing this setting. You can even define settings

that are typically set in the post properties into your program, so you are not reliant on making sure that

the property is set for a specific program. In this case the Action command would set the value of the

post property based on the input value associated with the command.

It is the onParameter function's responsibility to parse the text string passed as part of the Action

command. The text string could be a value, list of values, command and value, etc. The following table

lists the Action commands that are supported by the sample post processor code used in this section.

These Action commands set variables that will be used elsewhere in the program.

Action Command Values Description

Smoothing Off, Low, Medium, High Sets the smoothing type

Tolerance .001-.999 Smoothing tolerance

fastToolChange Yes, No Overrides the fastToolChange

post property
 Sample Action Type Manual NC Commands

In this example, the format for entering the Action Manual NC command is to specify the command

followed by the ':' separator which in turn is followed by the value, in the Action text field.

Action Command Format

var smoothingType = 0;

var smoothingTolerance = .001;

function onParameter(name, value) {

 var invalid = false;

 switch (name) {

 case "action":

 var sText1 = String(value).toUpperCase();

 var sText2 = new Array();

 sText2 = sText1.split(":");

 if (sText2.length != 2) {

 error(localize("Invalid action command: ") + value);

 return;

 }

Manual NC Commands 5-182

 CAM Post Processor Guide 8/8/23

 switch (sText2[0]) {

 case "SMOOTHING":

 smoothingType = parseChoice(sText2[1], "OFF", "LOW", "MEDIUM", "HIGH");

 if (smoothingType == undefined) {

 error(localize("Smoothing type must be Off, Low, Medium, or High"));

 return;

 }

 break;

 case "TOLERANCE":

 smoothingTolerance = parseFloat(sText2[1]);

 if (isNaN(smoothingTolerance) || ((smoothingTolerance < .001) || (smoothingTolerance > .999))) {

 error(localize("Smoothing tolerance must be a value between .001 and .999"));

 return;

 }

 break;

 case "FASTTOOLCHANGE":

 var fast = parseChoice(sText2[1], "YES", "NO");

 if (fast == undefined) {

 error(localize("fastToolChange must be Yes or No"));

 return;

 }

 setProperty("fastToolChange", fast);

 break;

 default:

 error(localize("Invalid action parameter: ") + sText2[0] + ":" + sText2[1]);

 return;

 }

 }

}

/* returns the choice specified in a text string compared to a list of choices */

function parseChoice() {

 var stat = undefined;

 for (i = 1; i < arguments.length; i++) {

 if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {

 if (String(arguments[i]).toUpperCase() == "YES") {

 stat = true;

 } else if (String(arguments[i]).toUpperCase() == "NO") {

 stat = false;

 } else {

 stat = i - 1;

 break;

 }

 }

 }

 return stat;

Manual NC Commands 5-183

 CAM Post Processor Guide 8/8/23

}
Handling the Action Manual NC Command

To make it easier to use custom Action Manual NC commands you can use the Template capabilities of

HSM. First you will create the Manual NC command that you will turn into a template using the

example in the Action Command Format picture shown above. Once the Manual NC command is

created you will want to give it a meaningful name by renaming it in the Operation Tree.

Rename the Action Manual NC Command Before Creating Template

Now you will create a template from this Manual NC command by right clicking on the Manual NC

command and selecting Store As Template. You will want to give the template the same name as you

did in the rename operation.

Creating the Manual NC Command Template

The template is now ready to be used in other operations and parts. You do this by right clicking a

Setup or a Folder in the Operations Tree, position the mouse over the Create From Template menu and

select the template you created.

Using the Manual NC Command Template You Created

5.4 onPassThrough

Function onPassThrough (value)

Arguments Description

value Text to be output to the NC file.

Debugging 6-184

 CAM Post Processor Guide 8/8/23

The Pass through Manual NC command is used to pass a text string directly to the NC file without any

processing by the post processor. It is similar to editing the NC file and adding a line of text by hand.

The text string could be standard codes (G, M, etc.) or a simple message. Since the post has no control

or knowledge of the codes being output, it is recommended that you use the Pass through command

sparingly and only with codes that cannot be output using another method.

The onPassThrough function handles the Pass through Manual NC command and is passed the text

entered with the command. The following sample code will accept a text string with comma delimiters

that will separate the text into individual lines.

function onPassThrough(text) {

 var commands = String(text).split(",");

 for (text in commands) {

 writeBlock(commands[text]);

 }

}
Output Lines of Codes/Text Separated by Commands Using the Pass through Manual NC Command

Like the Action Manual NC command, you can setup a Template to use with the Pass through command

if you find yourself needing to output the same codes in multiple instances.

6 Debugging

6.1 Overview

The first thing to note when debugging is that there is not an interactive debugger associated with the

Autodesk CAM post processors. This means that all debugging information must be output using

settings within the post and with explicit writes. This section describes different methods you can use

when debugging your post.

You can also use the HSM Post Processor Editor to aid in debugging your program as described in the

Running/Debugging the Post section of this manual

6.2 The dump.cps Post Processor

The dump.cps post processor will process an intermediate CNC file and output a file that contains all of

the information passed from HSM to the post processor. The output file has a file extension of .dmp.

The contents of the dump file will show the settings of all parameter values and will list the entry

functions called along the arguments passed to the function and any settings that apply to that function.

The dump.cps output can be of tremendous value when developing and debugging a post processor.

342: onParameter('dwell', 0)

344: onParameter('incrementalDepth', 0.03937007874015748)

346: onParameter('incrementalDepthReduction', 0.003937007932681737)

Debugging 6-185

 CAM Post Processor Guide 8/8/23

348: onParameter('minimumIncrementalDepth', 0.01968503937007874)

350: onParameter('accumulatedDepth', 5)

352: onParameter('chipBreakDistance', 0.004023600105694899)

354: onMovement(MOVEMENT_CUTTING /*cutting*/)

354: onCycle()

 cycleType='chip-breaking'

 cycle.clearance=123456

 cycle.retract=0.19685039370078738

 cycle.stock=0

 cycle.depth=0.810440544068344

 cycle.feedrate=15.748000257597194

 cycle.retractFeedrate=39.370100366787646

 cycle.plungeFeedrate=15.748000257597194

 cycle.dwell=0

 cycle.incrementalDepth=0.03937007874015748

 cycle.incrementalDepthReduction=0.003937007932681737

 cycle.minimumIncrementalDepth=0.01968503937007874

 cycle.accumulatedDepth=5

 cycle.chipBreakDistance=0.004023600105694899

354: onCyclePoint(-1.25, 0.4999999924907534, -0.810440544068344)

355: onCyclePoint(1.25, 0.4999999924907534, -0.810440544068344)

356: onCycleEnd()
Sample dump.cps Output

6.3 Debugging using Post Processor Settings

There are variables available to the developer that control the output of debugging information. This

section contains a description of these variables.

6.3.1 debugMode

debugMode = true;

Setting the debugMode variable to true enables the output of debug information from the debug

command and is typically defined at the start of the post processor.

6.3.2 setWriteInvocations

setWriteInvocations (value);

Arguments Description

value true outputs debug information for the entry functions.

Enabling the setWriteInvocations setting will create debug output in the NC file similar to what is output

using the dump post processor. The debug information contains the entry functions (onParameter,

Debugging 6-186

 CAM Post Processor Guide 8/8/23

onSection, etc.) called during post processing and the parameters that they are called with. This

information will be output prior to actually calling the entry function and is labeled using the !DEBUG:

text.

!DEBUG: onRapid(-0.433735, 1.44892, 0.23622)

N190 Z0.2362

!DEBUG: onLinear(-0.433735, 1.44892, 0.0787402, 39.3701)

N195 G1 Z0.0787 F39.37

!DEBUG: onLinear(-0.433735, 1.44892, -0.5, 19.685)

N200 Z-0.5 F19.68
setWriteInvocations Output

6.3.3 setWriteStack

setWriteStack (value);

Arguments Description

value true outputs the call stack that outputs the line to the NC file.

Enabling the setWriteStack setting displays the call stack whenever text is output to the NC file. The

call stack will consist of the !DEBUG: label, the call level, the name of the post processor, and the line

number of the function call (the function name is not included in the output).

!DEBUG: 1 rs274.cps:108

!DEBUG: 2 rs274.cps:919

!DEBUG: 3 rs274.cps:357

N125 M5
setWriteStack Output

…

108: writeWords2("N" + sequenceNumber, arguments);

…

357: onCommand(COMMAND_STOP_SPINDLE);

…

919: writeBlock(mFormat.format(mcode));
Post Processor Contents

6.4 Functions used with Debugging

Functions that can be used to output debug information to the log and NC files include debug, writeln,

and log. Additionally, the writeComment function present in almost all post processors can be used.

The text provided to the debug functions can contain operations and follow the same rules as defining a

string variable in JavaScript. You can also specify vectors or matrixes and these will be properly

formatted for output. For example,

Debugging 6-187

 CAM Post Processor Guide 8/8/23

var x = 3;

debug("The value of x is " + x);

For floating point values you may want to create a format that limits the number of digits to right of the

decimal point, as some numbers can be quite long when output.

var numberFormat = createFormat({decimals:4});

var x = 3;

debug("The value of x is " + numberFormat.format(x));

When writing output debug information to the log and/or NC files it is recommended that you precede

the debug text with a fixed string, such as "DEBUG – ", so that it is easily discernable from other output.

6.4.1 debug

debug (text);

Arguments Description

text Outputs text to the log file when debugMode is set to true.

The debug function outputs the provided text message to the log file only when the debugMode variable

is set to true. The text is output exactly as provided, without any designation that the output was

generated by the debug function.

6.4.2 log

log(text);

Arguments Description

text Outputs text to the log file.

The log function outputs the text to the log file. It is similar to the debug function, but does not rely on

the debugMode setting.

6.4.3 writeln

writeln(text);

Arguments Description

text Outputs text to the NC file.

Multi-Axis Post Processors 7-188

 CAM Post Processor Guide 8/8/23

The writeln function outputs the text to the NC file. It is used extensively in post processors to output

valid data to the NC file and not just debug text.

6.4.4 writeComment

writeComment(text);

Arguments Description

text Outputs text to the NC file as a comment.

The writeComment function is defined in the post processor and is used to output comments to the

output NC file. It is described in the onComment section of this manual.

6.4.5 writeDebug

function writeDebug(text)

Arguments Description

text Outputs text to the NC and log files.

The writeDebug function is not typically present in the generic post processors. You can create one to

handle the output of debug information to both the log file and NC file so that if the post processor either

fails or runs successfully you would still see the debug output.

function writeDebug(text) {

 if (true) { // can use the global setting 'debugMode' instead

 writeln("DEBUG - " + text); // can use 'writeComment' instead

 log("DEBUG - " + text); // can use 'debug' instead

 }

}
Sample writeDebug Function

7 Multi-Axis Post Processors

7.1 Adding Basic Multi-Axis Capabilities

Adding multi-axis capabilities to a post processor can be rather straight forward or difficult depending

on the situation. This chapter will cover the basics and the more complex aspects of multi-axis support,

such as adjusting points for a head, inverse time feedrates, etc.

The generic RS-274D Sample Multi-axis Post Processor is available to use as a sample for

implementing multi-axis support in any post processor. It supports CAM defined and hardcoded

Machine Configurations. You can use this post processor for testing rotary axes configurations and for

copying functionality into your custom post processor.

Multi-Axis Post Processors 7-189

 CAM Post Processor Guide 8/8/23

Please note that support for 3+2 operations is not handled here, except for the setup of the machine.

Refer to the Work Plane section in the onSection chapter for a description on how to handle 3+2

operations.

7.1.1 Create the Rotary Axes Formats

The output formats for the rotary axes must first be defined. In existing multi-axis posts and posts that

contain the skeleton structure of multi-axis support these codes should already be defined. You should

add (or verify that they already exist) the following definitions at the top of the post processor in the

same area that all other formats are defined.

var abcFormat = createFormat({decimals:3, forceDecimal:true, scale:DEG});

…

var aOutput = createVariable({prefix:"A"}, abcFormat);

var bOutput = createVariable({prefix:"B"}, abcFormat);

var cOutput = createVariable({prefix:"C"}, abcFormat);
Define the Rotary Axes Formats

The scale:DEG parameter specifies that the rotary axes angles will be output in degrees. If you require

the output to be in radians, then omit the scale setting.

7.1.2 The Machine Configuration Settings and Functions

The machine configuration and the associated settings are above the onOpen function and define and

activate the machine configuration in the post processor. If your post processor does not have this code,

or it uses the older method of defining a machine configuration in onOpen, then you should copy this

code from the RS-274D Sample Multi-axis post processor into your post. All lines between and

including the following lines should be copied.

// Start of machine configuration logic

...

// End of machine configuration logic
Copy this Code to your Custom Post Processor

You will also need to add the following code to the top of the onOpen function to call the machine

configuration functions.

function onOpen() {

 // define and enable machine configuration

 receivedMachineConfiguration = machineConfiguration.isReceived();

 if (typeof defineMachine == "function") {

 defineMachine(); // hardcoded machine configuration

 }

 activateMachine(); // enable the machine optimizations and settings
Copy this Code to the Top of the onOpen Function

The variables at the top of the machine configuration code control certain aspects of multi-axis logic

within the post processor.

Multi-Axis Post Processors 7-190

 CAM Post Processor Guide 8/8/23

/ Start of machine configuration logic

var compensateToolLength = false; // add the tool length to the pivot distance for nonTCP rotary heads

Variable Description

compensateToolLength This variable is only used for rotary head configurations that do not support

TCP. When it is enabled, the body length of the tool (tool body length) will

be added to the pivot distance. Rotary head configurations are discussed in

detail in the Adjusting the Points for Offset Rotary Axes section.
Multi-axis Settings

7.1.3 Creating a Hardcoded Multi-Axis Machine Configuration

You can use a Machine Configuration in the CAM system to define the rotary axis kinematics of the

machine or it can be hardcoded in the post processor. This section describes how you would hardcode

the machine configuration inside of the post processor script.

The hardcoded machine configuration can be found in the defineMachine function.It includes all

applicable settings that are found in the Machine Configuration and contains the following sections of

code.

function defineMachine() {

 // if (!receivedMachineConfiguration) { // CAM machine configuration takes precedence

 if (true) { // hardcoded machine configuration takes precedence

 // define machine kinematics

 var useTCP = false; // TCP support

 var aAxis = createAxis({coordinate:X, table:true, axis:[1, 0, 0], offset:[0, 0, 0], range:[-120, 30],

cyclic:false, preference:-1, tcp:useTCP});

 var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], offset:[0, 0, 0], cyclic:true, reset:0,

tcp:useTCP});

 machineConfiguration = new MachineConfiguration(aAxis, cAxis);
Define Machine Kinematics

The rotary axes can be customized to match the machine configuration using the parameters in the

createAxis command.

Parameter Description

table Set to true when the rotary axis is a table, or false if it is a head. The default if not

specified is true.

axis Specifies the rotational axis of the rotary axis in the format of a vector, i.e. [0, 0, 1].

This vector does not have to be orthogonal to a major plane, for example it could be [0,

.7071, .7071]. The direction of the rotary axes are based on the righthand rule for tables

and the lefthand rule for heads. You can change direction of the axis by supplying a

vector pointing in the opposite direction, i.e. [0, 0, -1]. This parameter is required.

Multi-Axis Post Processors 7-191

 CAM Post Processor Guide 8/8/23

Parameter Description

offset Defines the rotational position of the axis in the format of a coordinate, i.e. [0, 0, 0].

For machines that support TCP the offset parameter can be omitted. The offset values

for tables are based on the part origin defined in the Setup. The offset value for the

rider or primary rotary head is based on the distance from the tool stop (or spindle face)

position to the pivot point of the rotary head. The offset value for the carrier rotary

head (when the machine has a head/head configuration) is based on the pivot point of

the rider axis to the pivot point of the carrier axis. The default is [0, 0, 0].

coordinate Defines the coordinate of the axis, either X, Y, or Z. You will notice a number used in

most of the generic posts, in this case 0=X, 1=Y, and 2=Z. Either specification is

acceptable input. This parameter is required.

cyclic Defines whether the axis is cyclic (continuous) in nature, in that the output will always

be within the range specified by the range parameter. Cyclic axes will never cause the

onRewindFunction to be called, since they are continuous in nature and do not have

limits. The range applies specifically to output values for this axis. The default is false.

tcp Defines whether the control supports Tool Center Point programming for this axis.

Each axis can have its own setting. The default is true.

range Defines the upper and lower limits of the rotary axis using the format [lower, upper]. If

the rotary axis is cyclic, then the range sets the limits of the output values for this axis,

if it is not cyclic the range is the actual physical limits of the machine.

preference Specifies the preferred angle direction at the beginning of an operation. -1 = choose the

negative angle, 0 = no preference, and 1 = choose the positive angle. The default is 0.

reset Defines the starting position of the axis for a new operation and when the rotary axes

need to be rewound and reconfigured due to exceeding the limits. 0 = remember the

position from previous section, 1 = reset to 0 at start of operation, 2 = reset to 0 at

automatic rewind, 3 = reset to 0 at start of operation and at automatic rewind. This

parameter is implemented since R42225 of the post engine.

resolution Specifies the resolution in degrees of the rotational actuator. Typically, this will be set

to the number of digits to the right of the decimal as specified in the createFormat call

for the rotary axes. The default is 0.

createAxis Parameters

The order in which the axes are defined in the new MachineConfiguration call is important and must use

the following order.

Order Rotary Axis

1 Rotary head rider

2 Rotary head carrier

3 Rotary table carrier

4 Rotary table rider
machineConfiguration Rotary Axis Order

// 4 axis setup, A rotates around X, direction is positive

var aAxis = createAxis({coordinate:X, table:true, axis:[1, 0, 0], cyclic:true, tcp:false, preference:1});

Multi-Axis Post Processors 7-192

 CAM Post Processor Guide 8/8/23

machineConfiguration = new MachineConfiguration(aAxis);

// 4 axis setup, A rotates around X, direction is negative

var aAxis = createAxis({coordinate:X, table:true, axis:[-1, 0, 0], cyclic:true, tcp:false,, preference:1});

machineConfiguration = new MachineConfiguration(aAxis);

setMachineConfiguration(machineConfiguration);

// 5 axis setup, B rotates around Y, C rotates around Z, directions both positive

var bAxis = createAxis({coordinate:Y, table:true, axis:[0, 1, 0], range:[-120,120], tcp:true,

 preference:1});

var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], cyclic:true, tcp:true});

machineConfiguration = new MachineConfiguration(bAxis, cAxis);

setMachineConfiguration(machineConfiguration);

// Same table/table setup, without TCP, top and center of C-axis is defined as the origin

var bAxis = createAxis({coordinate:Y, table:true, axis:[0, 1, 0], offset:0, 0, -12.5], range:[-120,120],

 tcp:false, preference:1});

var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], cyclic:true, tcp:false});

machineConfiguration = new MachineConfiguration(bAxis, cAxis);

setMachineConfiguration(machineConfiguration);

// 5-axis head/head setup without TCP

var aAxis = createAxis({coordinate:X, table:false, axis:[-1, 0, 0], offset:[0, 0, 8.75], range:[-120,120],

 tcp:false, preference:-1});

var cAxis = createAxis({coordinate:Z, table:false, axis:[0, 0, 1], cyclic:false, range:[-180, 180],

 tcp:false});

machineConfiguration = new MachineConfiguration(aAxis, cAxis);

setMachineConfiguration(machineConfiguration);
Sample Rotary Configurations

The determination if the output coordinates should be at the pivot point of the rotary heads or the virtual

tooltip position (as if the tool is vertical) is decided by the setVirtualTooltip function. This setting is

only applied to rotary heads that do not support TCP. The virtual tooltip position is described in the

Adjusting the Points for Offset Rotary Axes section.

 // multiaxis settings

 if (machineConfiguration.isHeadConfiguration()) {

 machineConfiguration.setVirtualTooltip(false); // translate the pivot point to the virtual tool tip

for nonTCP rotary heads

 }
Virtual Tooltip Setting

It is possible on some machine configurations that the limits of the rotary axes will be exceeded and the

tool has to be retracted and the rotary axes repositioned to within the limits of the machine. The

following code defines the required settings for the retract/reconfigure logic. It is described in the

Rewinding of the Rotary Axes when Limits are Reached section.

Multi-Axis Post Processors 7-193

 CAM Post Processor Guide 8/8/23

 // retract / reconfigure

 var performRewinds = false; // set to true to enable the retract/reconfigure logic

 if (performRewinds) {

 machineConfiguration.enableMachineRewinds(); // enables the retract/reconfigure logic

 safeRetractDistance = (unit == IN) ? 1 : 25; // additional distance to retract out of stock, can be

overridden with a property

 safeRetractFeed = (unit == IN) ? 20 : 500; // retract feed rate

 safePlungeFeed = (unit == IN) ? 10 : 250; // plunge feed rate

 machineConfiguration.setSafeRetractDistance(safeRetractDistance);

 machineConfiguration.setSafeRetractFeedrate(safeRetractFeed);

 machineConfiguration.setSafePlungeFeedrate(safePlungeFeed);

 var stockExpansion = new Vector(toPreciseUnit(0.1, IN), toPreciseUnit(0.1, IN),

toPreciseUnit(0.1, IN)); // expand stock XYZ values

 machineConfiguration.setRewindStockExpansion(stockExpansion);

 }
Retract/Reconfigure Settings

Multi-axis machines that do not support TCP will usually require inverse time or degree per minute

feedrates. The mulit-axis feedrate format is defined in the following section of code. Multi-axis

feedrates are discussed in more detail in the Multi-Axis Feedrates section.

 // multi-axis feedrates

 if (machineConfiguration.isMultiAxisConfiguration()) {

 machineConfiguration.setMultiAxisFeedrate(

 useTCP ? FEED_FPM : getProperty("useDPMFeeds") ? FEED_DPM :

FEED_INVERSE_TIME,

 9999.99, // maximum output value for inverse time feed rates

 getProperty("useDPMFeeds") ? DPM_COMBINATION : INVERSE_MINUTES, //

INVERSE_MINUTES/INVERSE_SECONDS or DPM_COMBINATION/DPM_STANDARD

 0.5, // tolerance to determine when the DPM feed has changed

 1.0 // ratio of rotary accuracy to linear accuracy for DPM calculations

);

 }
Multi-Axis Feedrates Definition

The home position of the machine can be defined in the defineMachine function. The home positions

are used in the writeRetract function when positioning the machine in machine coordinates (G53) or

WCS coordinates (G00).

 /* home positions */

 // machineConfiguration.setHomePositionX(toPreciseUnit(0, IN));

 // machineConfiguration.setHomePositionY(toPreciseUnit(0, IN));

 // machineConfiguration.setRetractPlane(toPreciseUnit(0, IN));
Defining the Machine Home Coordinates

Multi-Axis Post Processors 7-194

 CAM Post Processor Guide 8/8/23

Finally, the post processor engine needs to be informed of the hardcoded machine configuration.

 // define the machine configuration

 setMachineConfiguration(machineConfiguration); // inform post kernel of hardcoded machine

configuration

 if (receivedMachineConfiguration) {

 warning(localize("The provided CAM machine configuration is overwritten by the

postprocessor."));

 receivedMachineConfiguration = false; // CAM provided machine configuration is overwritten

 }
Informing the Post Engine of the Hardcoded Machine Configuration

7.1.4 Calculating the Rotary Angles

Once a Machine Configuration is defined the rotary axes angles need to be calculated and the tool end

point needs to be adjusted for the rotary axes if TCP is not supported. This holds true for CAM and

hardcoded Machine Configurations. This is handled in the activateMachine function and should not

have to be modified. It is described here for reference purposes only.

The optimizeMachineAngles2 function calculates the rotary axes angles and adjusts the XYZ coordinates

for the rotary axes if TCP is not supported. The following values are passed to the

optimizeMachineAngles2 function.

Value Description

OPTIMIZE_NONE Don't adjust the coordinates for the rotary axes. Used for TCP mode.

OPTIMIZE_BOTH Adjust the coordinates for the rotary axes. For rotary heads that do

not support TCP it is possible that the tool length has to be added to

the tool end point coordinates. This scenario is discussed further in

the Adjusting the Points for Rotary Heads section of this chapter.

OPTIMIZE_TABLES Adjust the coordinates for rotary tables. No adjustment will be made

for heads.

OPTIMIZE_HEADS Adjust the coordinates for rotary heads. No adjustment will be made

for tables.

OPTIMIZE_AXIS Adjust the coordinates for the rotary axes based on the TCP setting

associated with the defined axes. This is the required setting for

CAM defined Machine Configurations and hardcoded Machine

Configuration that define the tcp variable in the createAxis

definitions.
Settings for Adjusting the Input Coordinates for the Rotary Axes

Rotary head adjustments that require that the tool length be added to the offset distance of the axis

cannot be adjusted using the optimizeMachineAngles2 function, since the tool length will vary from tool

to tool. Instead, the Section function optimizeMachineAnglesByMachine is called for each section. This

is also true for post processors that may change the Machine Configuration during the processing of the

Multi-Axis Post Processors 7-195

 CAM Post Processor Guide 8/8/23

operations. Following is the generic code used in the activateMachine function that is used to calculate

the rotary axes angles and adjust the tool end point coordinates.

 // calculate the ABC angles and adjust the points for multi-axis operations

 // rotary heads may require the tool length be added to the pivot length

 // so we need to optimize each section individually

 if (machineConfiguration.isHeadConfiguration() && compensateToolLength) {

 for (var i = 0; i < getNumberOfSections(); ++i) {

 var section = getSection(i);

 if (section.isMultiAxis()) {

 machineConfiguration.setToolLength(getBodyLength(section.getTool())); // define the tool

length for head adjustments

 section.optimizeMachineAnglesByMachine(machineConfiguration, OPTIMIZE_AXIS);

 }

 }

 } else { // tables and rotary heads with TCP support can be optimized with a single call

 optimizeMachineAngles2(OPTIMIZE_AXIS);

 }
Rotary Axes Calculations and Coordinate Transformation

If the call to calculate the rotary axes and adjust the input coordinates is not made then the tool end point

and tool axis vector will be passed to the onRapid5D and onLinear5D multi-axis functions.

7.1.5 Output Initial Rotary Position

A function should be defined that outputs the rotary axis position in a block by themselves. In legacy

posts this code is contained inline can be found in multiple places within the post.

/** Positions the rotary axes in rapid mode */

function positionABC(abc, force) {

 if (typeof unwindABC == "function") {

 unwindABC(abc, false);

 }

 if (force) {

 forceABC();

 }

 var a = aOutput.format(abc.x);

 var b = bOutput.format(abc.y);

 var c = cOutput.format(abc.z);

 if (a || b || c) {

 if (!retracted) {

 if (typeof moveToSafeRetractPosition == "function") {

 moveToSafeRetractPosition();

 } else {

 writeRetract(Z);

 }

Multi-Axis Post Processors 7-196

 CAM Post Processor Guide 8/8/23

 }

 onCommand(COMMAND_UNLOCK_MULTI_AXIS);

 gMotionModal.reset();

 writeBlock(gMotionModal.format(0), a, b, c);

 setCurrentABC(abc); // required for machine simulation

 }

}
Output Initial Rotary Axes Positions

The initial rotary axes positions must be calculated prior calling the positionABC function. The function

getInitialToolAxisABC() is used to obtain the initial rotary axes positions for multi-axis operations.

if (currentSection.isMultiAxis()) {

 var abc = section.getInitialToolAxisABC();

 positionABC(abc, true);

}
Calculate Initial Rotary Angles for a Multi-axis Operation

7.1.6 Create the onRapid5D and onLinear5D Functions

Now that you have the machine defined you will need to verify that the onRapid5D and onLinear5D

functions are present. These are the functions that will process the tool path generated by multi-axis

operations. If your post already has these functions defined, then great you should be (almost) ready to

go, if not then add the following functions to your post.

function onRapid5D (_x, _y, _z, _a, _b, _c) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis simultaneous

toolpath."));

 return;

 }

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 if (x || y || z || a || b || c) {

 writeBlock(gMotionModal.format(0), x, y, z, a, b, c);

 feedOutput.reset();

 }

}

Multi-Axis Post Processors 7-197

 CAM Post Processor Guide 8/8/23

onRapid Function

function onLinear5D (_x, _y, _z, _a, _b, _c, feed, feedMode) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis simultaneous

toolpath."));

 return;

 }

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));

 return;

 }

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 var f = feedOutput.format(_feed);

 // get feedrate number

 var fMode = feedMode == FEED_INVERSE_TIME ? 93 : 94;

 var f = feedMode == FEED_INVERSE_TIME ? inverseTimeOutput.format(feed) :

 feedOutput.format(feed);

 if (x || y || z || a || b || c) {

 writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), x, y, z, a, b, c, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 feedOutput.reset(); // force feed on next line

 } else {

 writeBlock(gfFeedModeModal.format(fMode), MotionModal.format(1), f);

 }

 }

}
onLinear5D Function

Both of these functions as presented are basic in nature and the requirements for your machine may

require some modification.

7.1.7 Multi-Axis Common Functions

There are functions that are useful when developing a post processor for a multi-axis machine. These

functions are used to determine if the rotary axes are configured, the beginning and ending tool axis or

rotary axes positions for an operation, and control the flow of the multi-axis logic.

Multi-Axis Post Processors 7-198

 CAM Post Processor Guide 8/8/23

Function Description

machineConfiguration.isMultiAxisConfiguration() Returns true if a machine configuration containing rotary
axes has been defined. It is still possible to create output
for some multi-axis machines if the rotary axes have not
been defined, by outputting the tool axis vector instead of
the rotary axes positions or by using Euler angles for 3+2
operations.

machineConfiguration.getABCByPreference
 (matrix, current, controllingAxis, type, options)

Returns the preferred rotary axes angles for the provided
matrix. This matrix is usually the Work Plane matrix
(currentSection.workPlane). getABCByPreference is
described in further detail in the Work Plane – 3+2
Operations section.

section.isOptimizedForMachine() Returns true if the rotary axes angles have been calculated
for the section.

section.isMultiAxis() Returns true if the operation specified by section is a
multi-axis operation.

section.getGlobalInitialToolAxis() Returns the initial tool axis for the provided section as a
Vector. Usually used at the start of an operation using the

currentSection variable.

section.getInitialToolAxisABC() Returns the initial rotary axes angles for the provided
section as a Vector. Usually used at the start of an
operation using the currentSection variable. An error will
be generated if a machine configuration containing rotary

axes has not been defined.

section.getGlobalFinalToolAxis() Returns the final tool axis for the provided section as a
Vector. Usually used at the start of an operation using
getPreviousSection().

section.getFinalToolAxisABC() Returns the final rotary axes angles for the provided
section as a Vector. Usually used at the start of an
operation using getPreviousSection(). An error will be
generated if a machine configuration containing rotary
axes has not been defined.

section.getOptimizedTCPMode() Returns the mode used to adjust the output coordinates for
the rotary axes for this section. The different modes are
listed in the Calculating the Rotary Axes section in this
chapter.

getCurrentDirection() Returns the current rotary axes angles as a Vector in a
multi-axis operation. It will return the Work Plane
forward vector when in a 3-axis or 3+2 operation.

is3D() Returns true if the entire program is a 3-axis operation
with no multi-axis operations. Returns false if even one
operation is a 3+2 or multi-axis operation.

setCurrentABC(abc) Sets the current ABC position in the post engine. This
function should be called whenever the rotary angles are
calculated and output within the post processor.

Multi-Axis Common Functions

Multi-Axis Post Processors 7-199

 CAM Post Processor Guide 8/8/23

7.2 Output of Continuous Rotary Axis on a Rotary Scale

There are two different styles that are commonly used for rotary axes output, using a linear scale or a

rotary scale. A linear scale is the more standard case in today's machines and will move on a

progressive scale similar to a linear axis output. For example, a value of 720 degrees will move the axis

two revolutions from 0 degrees. A linear scale is almost always used with a non-continuous axes and

can be used with a continuous rotary axis.

A rotary scale on the other hand typically outputs the rotary angle positions between 0 and 360 degrees,

usually with the sign ± specifying the direction. If a sign is not required and the control will always take

the shortest route, then it is pretty straight forward to output the rotary axis on a rotary scale, simply

define it as a cyclic axis with a range of 0 to 360 degrees.

var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], cyclic:true, range:[0, 360]});
Create Rotary Axis Using a Rotary Scale. Machine will Take the Shortest Route

For controls that require a sign to designate the direction the rotary axis will move, you will need to

define the rotary axis on a linear scale. Yes, it sounds counterintuitive, but the output variable will

handle converting the linear scale value to a signed rotary scale value.

var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], cyclic:true});
Create Rotary Axis Using a Linear Scale when Output Using a Rotary Scale

The createOutputVariable function can be used to output a directional value for a rotary axis on a rotary

scale.

var aOutput = createOutputVariable({prefix:"A", type:TYPE_DIRECTIONAL, cyclicLimit:360,

 cyclicSign:1}, aFormat);
Create the Output Variable using a Rotary Scale

There are no more modifications needed.

7.3 Adjusting the Points for Offset Rotary Axes

The post processor kernel has support for offset tables and heads when TCP is not supported on the

machine. The offsets from the part origin to the rotary center(s) must be defined when the axis is

created. This is done using the offset parameter in createAxis.

var aAxis = createAxis({coordinate:X, table:false, axis:[-1, 0, 0], offset:[0, 0, 8.75], range:[-120,120],

 tcp:false, preference:-1});

Create an Offset Rotary Head

It is important to know how the offsets are applied to each style of rotary axis. For rotary heads

remember the head rider axis is defined first and then the head carrier axis. When the carrier and rider

heads share a common pivot point, then only the offset for the rider axis needs to be defined. This offset

is defined from the tool stop position to the pivot point. When the pivot points are different, the carrier

Multi-Axis Post Processors 7-200

 CAM Post Processor Guide 8/8/23

axis offset is defined as the offset from the rider pivot point. Most machines will use a common pivot

point for both rotary axes.

Rotary Axis Rotary Axis

Rotary head rider Distance from tool stop to pivot point

Rotary head carrier Distance from Head Rider pivot point to Head

Carrier pivot point

Rotary table carrier Distance from part origin to center of table

Rotary table rider Distance from part origin to center of table
Non-TCP Rotary Axis Offsets

Rotary Head Pivot References

When defining an offset rotary table, defining the offset is all that is needed before the rotary angles and

transformed coordinates are calculated.

For offset heads on machines that do not support TCP there are a couple of more function calls that may

be needed.

It is possible that the tool length needs to be added to the offset of the head rider axis defined in the

createAxis function. On small hobbyist machines it could be that the tool will always be the same length

and can then be defined as part of the offset. On machines that use different tool lengths you will need

to inform the post engine of the tool length to be added to the pivot distance prior to calculating the

Multi-Axis Post Processors 7-201

 CAM Post Processor Guide 8/8/23

offset coordinates for the section. This is done by calling the machineConfiguration.setToolLength

function with the length of the tool from the tool end point to the tool stop position used to define the

offset for the head.

Tool Length Definition

The post processor will typically use the Overall length of the tool as defined in the CAM system as the

tool length.

Overall Length Defines the Tool Length

The output of the offset head coordinates can either be at the pivot point of the axis or the tool end point

when the rotary axes are at 0 degrees (the tool is vertical). You would normally setup the machine with

the tool tip at Z0. In this case the output coordinates will be at the virtual tool tip, meaning that the

coordinates will be where the tool tip position would be when the rotary axes are at 0 degrees, even

when the axes are tilted.

Multi-Axis Post Processors 7-202

 CAM Post Processor Guide 8/8/23

Virtual Tool Tip

The machineConfiguration.setVirtualTooltip function is used to define whether the output coordinates

are at the pivot point or at the virtual tool tip in a hardcoded machine configuration. In either case it is

important that the proper offset distance and tool length are provided in order for the correct XYZ

coordinates to be calculated. The activateMachine function handles the calculation of offset tables and

heads based on the definition of each rotary axes and the following settings.

7.4 Calculation of the Multi-Axis Tool Position

It is possible to manually calculate the machine linear position based on the tool end point position or

the tool end point position based on the machine linear position based on the rotary axis positions. The

machineConfiguration.getOptimizedPosition function performs both conversions.

machineConfiguration.getOptimizedPosition(current, abc, tcpType, optimizeType, force)
Adjust a Coordinate for the Rotary Axis Positions

Parameter Variable Type Description

current Vector Either the tool tip or machine XYZ position based on tcpType.

abc Vector The rotary axis positions.

tcpType Value Type of conversion.

optimizeType Value Type of optimization.

Multi-Axis Post Processors 7-203

 CAM Post Processor Guide 8/8/23

Parameter Variable Type Description

force Boolean Set to true to adjust the values even if TCP is in effect. Valid

for TCP_XYZ_OPTIMIZED and TCP_TOOL_OPTIMIZED.
getOptimizedPosition Parameters

Value Description Current Input Value

TCP_XYZ Converts the tool tip to the machine

XYZ position.

Tool tip

TCP_TOOL Converts the machine XYZ position

to the tool tip position.

Machine XYZ

TCP_XYZ_OPTIMIZED Converts the tool tip to the machine

XYZ position only when the input

coordinates are adjusted for the rotary

axes (non-TCP).

Position as supplied to

onRapid5D and onLinear5D.

TCP_TOOL_OPTIMIZED Converts the machine XYZ position

to the tool tip position only when the

input coordinates are adjusted for the

rotary axes (non-TCP).

Position as supplied to

onRapid5D and onLinear5D.

tcpType Values

Value Description

OPTIMIZE_BOTH Adjust the coordinates for both tables and heads.

OPTIMIZE_TABLES Adjust the coordinates for rotary tables only.

OPTIMIZE_HEADS Adjust the coordinates for rotary heads only.
optimizeType Values

// calculate the machine XYZ position from the tool tip position

var xyz = machineConfiguration.getOptimizedPosition(toolTip, abc, TCP_XYZ, OPTIMIZE_BOTH,

false);

function onRapid5D(_x, _y, _z, _a, _b, _c) {

 // calculate the tool tip position

 // if the input coordinates are not adjusted for the rotary axes, the output coordinate will be

 // the same as the input coordinate

 var toolTip = machineConfiguration.getOptimizedPosition(

 new Vector(_x, _y, _z),

 new Vector(_a, _b, _c),

 TCP_TOOL_OPTIMIZED, OPTIMIZE_HEAD,

 false);
Sample Coordinate Conversions

7.5 Handling the Singularity Issue in the Post Processor

The post processor kernel handles the problem when the tool axis direction approaches the singularity of

the machine. The singularity is defined as the tool axis orientation that is perpendicular to a rotary axis,

Multi-Axis Post Processors 7-204

 CAM Post Processor Guide 8/8/23

either a table or head. When the tool direction approaches the singularity, you may notice that the rotary

axis can start to swing violently even if there is only a small deviation in the tool axis. If you can

imagine a machine with an A-axis trunnion carrying a C-axis table and the tool axis is 0, sin(.001),

cos(.001). This causes the output rotary positions to be A.001 C0. Now if the rotary axis changes to 0,

sin(.001), cos(.001), a change of less than .002 degrees you will notice that the rotary positions to be

A.001 C90. You can see where a very small directional change in the tool axis (<.002) will cause a 90-

degree change in the C-axis.

The singularity logic in the kernel will massage the tool axis direction to keep the tool within tolerance

and minimize the rotary axis movement in these cases. A safeguard that linearizes the moves around the

singularity has also been implemented. This linearization will add tool locations as necessary to keep

the tool endpoint within tolerance of the part.

Tool Direction Approaching the Singularity

There are settings in the post processor that manage how the singularity issue is handled. These settings

are defined using the following command.

machineConfiguration.setSingularity(adjust, method, cone, angle, tolerance, linearizationTolerance)

Variable Description

adjust Set to true to enable singularity optimization within the post processor.

Singularity optimization includes the ability to adjust the tool axis to

minimize singularity issues (large rotary axis movement when the tool axis

approaches perpendicularity to a rotary axis) and the linearization of the

Multi-Axis Post Processors 7-205

 CAM Post Processor Guide 8/8/23

Variable Description

moves around the singularity to keep the tool endpoint within tolerance. The

default is true.

method When set to SINGULARITY_LINEARIZE_OFF it disables the linearization

of the moves to keep the tool endpoint within tolerance of the programmed

tool path around the singularity. SINGULARITY_LINEARIZE_ROTARY

will linearize the moves around the singularity. Additional points are added

to keep the tool within the specified tolerance and is optimized for revolved

movement as if the tool were moving around a cylinder or other revolved

feature. SINGULARITY_LINEARIZE_LINEAR will also add additional

points to keep the tool within tolerance, but will keep the tool endpoint

moving in a straight line. The default is

SINGULARITY_LINEARIZE_ROTARY.

cone Specifies the angular distance that the tool axis vector must be within in

reference to the singularity point before the singularity logic is activated. This

is usually a small value (less than 5 degrees), since the further away the tool

axis is from the singularity, the less noticeable the fluctuations in the rotary

axes will be and the less benefit this feature will provide. This parameter is

specified in radians and the default value is .052 (3 degrees).

angle The minimum angular delta movement that the rotary axes must move prior

to considering adjusting the tool axis vector for singularity optimization. This

limit is used to keep from adjusting the tool axis vector when the rotary axes

do not fluctuate greatly. This is typically set to a value of 10 degrees or more.

This parameter is in radians and the default value is .175 (10 degrees).

tolerance The tolerance value used to keep the tool within tolerance when the tool axis

is adjusted to minimize rotary axis movement around the singularity. The

default value is .04mm (.0015in).

linearizationTolerance The tolerance value to use when additional points are added to keep the tool

endpoint within tolerance of the programmed move when the tool axis is near

the singularity. The default value is .04mm (.0015in).

The default settings are valid for most tool paths, but this command allows for some tweaking in special

cases where you want to fine tune the output.

7.6 Rewinding of the Rotary Axes when Limits are Reached

The post processor kernel will select the starting angles of the rotary axes based on the best possible

solution to avoid rewind situations when one of the rotary axes crosses its limits. This is accomplished

by scanning the entire operation to see if a rewind of the rotary axes is required due to limit violations

and if so adjusting the starting angles of the rotary axes to see if the rewind can be avoided. If a solution

to avoid the rewind cannot be found, then the solution that produces the most rotary movement prior to

requiring a rewind will be used.

The best possible solution for the rotary axes is always selected at the start of an operation and when a

rewind is required due to a rotary axis crossing the limits, the tool will always stop on the exact limit of

Multi-Axis Post Processors 7-206

 CAM Post Processor Guide 8/8/23

the machine, eliminating scenarios where a valid solution for the rewinding of the rotary axes could not

always be found.

When a rewind is required there is a group of functions that can be added to the custom post processor to

handle the actual rewinding of the affected rotary axis. This code can be easily copied into your custom

post processor and modified to suit your needs with just a little bit of effort.

One setting that is very important when defining a rotary axis is the cyclic parameter in the call to

createAxis. cyclic is considered synonymous with continuous, meaning that this axis has no limits and

will not be considered when determining if the rotary axes have to be repositioned to stay within limits.

The range specifier used in conjunction with a cyclic axis defines the output limits of a rotary axis, for

example specifying a range of [0,360] will cause all output angles for this axis to be output between 0

and 360 degrees. The range for a non-cyclic axis defines the actual physical limits of that axis on the

machine and are used to determine when a rewind is required. Please note that the physical limits of the

machine may be a numeric limit of the control instead of a physical limit, such as 9999.9999.

Another important setting is the reset parameter, which allows you to define the starting angle at the

start of an operation and after a rewind of the axes has occurred. By default, the post engine will use the

ending angle of the previous multi-axis operation. Some controls allow for the rotary axis encoder to be

reset so that the stored angle is reset to be within the 0-360 degrees without unwinding the axis. In this

case you will want to issue the proper codes to reset the axis encoder, for example G28 C0, and specify

reset:3 when you create the axis.

Now on to how you can implement the automatic rewind capabilities in your post. The bulk of the

feature is handled by the post processor kernel, but there are some variables and functions that are

required in your post. The variables used for retract/reconfigure are either defined in the CAM Machine

Configuration settings or in the defineMachine function for hardcoded machine configurations.

 // retract / reconfigure
 var performRewinds = false; // set to true to enable the retract/reconfigure logic
 if (performRewinds) {
 machineConfiguration.enableMachineRewinds(); // enables the retract/reconfigure logic

 safeRetractDistance = (unit == IN) ? 1 : 25; // additional distance to retract out of stock

 safeRetractFeed = (unit == IN) ? 20 : 500; // retract feed rate
 safePlungeFeed = (unit == IN) ? 10 : 250; // plunge feed rate
 machineConfiguration.setSafeRetractDistance(safeRetractDistance);
 machineConfiguration.setSafeRetractFeedrate(safeRetractFeed);
 machineConfiguration.setSafePlungeFeedrate(safePlungeFeed);
 var stockExpansion = new Vector(toPreciseUnit(0.1, IN), toPreciseUnit(0.1, IN), toPreciseUnit(0.1, IN)); //
expand stock XYZ values
 machineConfiguration.setRewindStockExpansion(stockExpansion);

 }
Retract/Reconfigure Settings Defined in defineMachine

Variable Description

performRewinds When set to false an error will be generated when a rewind of a rotary axis

is required. Setting it to true will enable the rewind logic..

Multi-Axis Post Processors 7-207

 CAM Post Processor Guide 8/8/23

safeRetractDistance Defines the distance to be added to the retract position when the tool is

positioned past the stock material to safely remove it from the stock. If it

is set to 0, then the tool will retract to the outer stock plus the stock

expansion.

safeRetractFeed Specifies the feedrate to retract the tool prior to rewinding the rotary axis.

safePlungeFeed Specifies the feedrate to plunge the tool back into the part after rewinding

the rotary axis.

stockExpansion The tool will retract past the defined stock by default. You can expand

the defined stock on all sides by defining the stockAllowance vector,

which contains the expansion value for X, Y, and Z.
Variables that Control Tool Retraction

You will need to copy the retract/reconfigure functions from a post that supports this logic into your

post. These functions are defined in the following section of code and include the designated functions.

// Start of onRewindMachine logic

…

// End of onRewindMachine logic
Copy this Code into Your Post

Function Arguments Description

onRewindMachineEntry (none) This function is called at the start of the

automatic rewind process and allows the

user to override the default rewind logic.

Returning true from this function will

disable the rewind logic in the post engine,

while false will continue with the

rewind/reconfigure process.

onMoveToSafeRetractPosition (none) Moves the tool to a safe retract position

after retracting the tool from the part.

onRotateAxes x, y, z, a, b, c Repositions the rotary axes to their new

location as provided by a,b,c after the tool

has been moved to its safe position.

onReturnFromSafeRetractPosition x, y, z Repositions the linear axes to the position

of the tool when it was retracted from the

part.
Automatic Rewind Entry Functions

The onRewindMachineEntry function is used to either override or supplement the standard rewind logic.

It will simply return false when the standard rewind logic of retracting the tool, repositioning the rotary

axes, and repositioning the tool is desired. Code can be added to this function for controls that just

require the encoder to be reset or to output the new rotary axis position when the control will

automatically track the tool with the rotary axis movement. The following example resets the C-axis

encoder when it is currently at a multiple of 360 degrees and the B-axis does not change.

Multi-Axis Post Processors 7-208

 CAM Post Processor Guide 8/8/23

/** Allow user to override the onRewind logic. */

function onRewindMachineEntry(_a, _b, _c) {

 // reset the rotary encoder if supported to avoid large rewind

 if (false) { // disabled by default

 if ((abcFormat.getResultingValue(_c) == 0) && !abcFormat.areDifferent(getCurrentDirection().y,

_b)) {

 writeBlock(gAbsIncModal.format(91), gFormat.format(28), "C" + abcFormat.format(0));

 writeBlock(gAbsIncModal.format(90));

 return true;

 }

 }

 return false;

}
Sample Code to Reset Encoder Instead of Rewinding C-axis

Returning a value of true designates that the onRewindMachineEntry function performed all necessary

actions to reposition the rotary axes and the retract/reposition/plunge sequence will not be performed.

Returning false will process the retract/reposition/plunge sequence normally.

The onMoveToSafeRetractPosition function controls the move to a safe position after the tool is

retracted from the part and before the rotary axes are repositioned. It will typically move to the home

position in Z and optionally in X and Y using a G28 or G53 style block. You should find similar code to

retract the tool when positioning the rotary axes for a 3+2 operation and in the onClose function, which

positions the tool at the end of the program. You should use the same logic found in these areas for the

onMoveToSafeRetractPosition function.

/** Retract to safe position before indexing rotaries. */

function onMoveToSafeRetractPosition() {

 writeRetract(Z); // retract to home position

 // cancel TCP so that tool doesn't follow rotaries

 if (currentSection.isMultiAxis() && operationSupportsTCP) {

 disableLengthCompensation(false);

 }

 if (false) { // enable to move to safe position in X & Y

 writeRetract(X, Y);

 }

}
Move to a Safe Position Prior to Repositioning Rotary Axes

The onRotateAxes function is used to position the rotary axes to their new position as calculated by the

post engine. _a, _b, _c define the new rotary axis position. _x, _y, _z should be ignored and not used.

/** Rotate axes to new position above reentry position */

function onRotateAxes(_x, _y, _z, _a, _b, _c) {

 // position rotary axes

 xOutput.disable();

Multi-Axis Post Processors 7-209

 CAM Post Processor Guide 8/8/23

 yOutput.disable();

 zOutput.disable();

 invokeOnRapid5D(_x, _y, _z, _a, _b, _c);

 xOutput.enable();

 yOutput.enable();

 zOutput.enable();

}
Position the Rotary Axes

The onReturnFromSafeRetractPosition function controls the move back to the position of the tool at the

original retract location past the stock. This function is called after the rotary axes are repositioned.

/** Return from safe position after indexing rotaries. */

function onReturnFromSafeRetractPosition(_x, _y, _z) {

 // reinstate TCP / tool length compensation

 if (!lengthCompensationActive) {

 writeBlock(gFormat.format(getOffsetCode()), hFormat.format(tool.lengthOffset));

 lengthCompensationActive = true;

 }

 // position in XY

 forceXYZ();

 xOutput.reset();

 yOutput.reset();

 zOutput.disable();

 invokeOnRapid(_x, _y, _z);

 // position in Z

 zOutput.enable();

 invokeOnRapid(_x, _y, _z);

}
Return from Safe Position after Repositioning Rotary Axes

7.7 Multi-Axis Feedrates

During multi-axis contouring moves, the machine control will typically expect the feedrate numbers to

be either in Inverse Time or some form of Degrees Per Minute. Inverse Time feedrates are simply the

inverse of the time that the move takes, i.e. 1 / movetime. If your control supports both Inverse Time

and Degrees Per Minute feedrates, it is recommended that you use Inverse Time as this is the most

accurate. Please note that if your machine supports TCP (Tool Control Point) programming, then it

probably supports direct Feed Per Minute (FPM) feedrates during multi-axis contouring moves and does

not require either Inverse Time or DPM feedrates.

Multi-axis feedrate calculations are handled by the post engine and and will work with all machine

configurations; table/table, head/head, and head/table. One capability of the multi-axis feedrate

calculation is that it considers the actual tool tip movement in reference to the rotary axes movement and

Multi-Axis Post Processors 7-210

 CAM Post Processor Guide 8/8/23

not just the straight-line movement along the programmed tool tip, creating more accurate multi-axis

feedrates. In the following picture the move along the arc caused by the movement of the rotary axis

(green arc) is used in the calculation instead of the straight-line move generated by HSM (blue line).

Actual Tool Path on Machine is Used in Feedrate Calculations

Multi-axis feedrate support is handled in the CAM Machine Configuration or in the defineMachine

function for a hardcoded machine configuration.

 // multi-axis feedrates
 if (machineConfiguration.isMultiAxisConfiguration()) {
 machineConfiguration.setMultiAxisFeedrate(
 useTCP ? FEED_FPM : getProperty("useDPMFeeds") ? FEED_DPM : FEED_INVERSE_TIME,
 9999.99, // maximum output value for inverse time feed rates
 getProperty("useDPMFeeds") ? DPM_COMBINATION : INVERSE_MINUTES, //
INVERSE_MINUTES/INVERSE_SECONDS or DPM_COMBINATION/DPM_STANDARD

 0.5, // tolerance to determine when the DPM feed has changed
 1.0 // ratio of rotary accuracy to linear accuracy for DPM calculations
);
 }

Enabling Multi-Axis Feedrates

Variable Description

feedMode FEED_INIVERSE_TIME (inverse time), FEED_DPM (degrees per

minute), or FEED_FPM (programmed feedrate).

Multi-Axis Post Processors 7-211

 CAM Post Processor Guide 8/8/23

maximumFeedrate Defines the maximum value that can be output for both inverse time and

degrees per minute feedrates.

feedType Multi-axis feedrate options. For inverse time feedrates, the options are

INVERSE_MINUTES or INVERSE_SECONDS, defining the units of

time to use in inverse time feedrate calculations. For DPM feedrates, then

the options are DPM_STANDARD for straight degrees per minute

calculations or DPM_COMBINATION which uses a combination of

degrees per minute and linear feed per minute (this is the most typical for

machines that want a form of DPM feedrates).

outputTolerance The tolerance for deciding whether to output a feedrate value or not. If

the feedrate value is within this tolerance of the previous feedrate value,

then it will be set to the previous value. This is used to minimize the

output of multi-axis feedrate numbers.

bpwRatio Defines the pulse weight ratio for the rotary axes when DPM feedrates are

output as a combination of linear and rotary movements. The pulse

weight is a scale factor based on the rotary axes accuracy compared to the

linear axes accuracy. For example, it should be set to .1 when the linear

axes are output on .0001 increments and the rotary axes on .001

increments.
setMultiAxisFeedrate Parameters

If Inverse Time feedrates are supported you will need to create the inverseTimeOutput variable at the top

of the post processor code and if the accuracy of the Inverse Time feedrates is different than the standard

FPM feedrate you will also need to create a new format to associate with it. The gFeedModeModal

modal variable will also need to be defined for support of G93/G94 output if it does not already exist.

var gFeedModeModal = createModal({}, gFormat); // modal group 5 // G93-94

…

var inverseFormat = createFormat({decimals:4, forceDecimal:true});

…

var inverseTimeOutput = createVariable({prefix:"F", force:true}, feedFormat);

…

Create inverseTimeOutput Variable

Now there are other areas of the post processor that need to be changed to support these feedrate modes.

First, the onLinear5D function must have support added to receive and output the feedrate mode and to

output the feedrate value using the correct format.

function onLinear5D(_x, _y, _z, _a, _b, _c, feed, feedMode) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis simultaneous

toolpath."));

 return;

 }

 // at least one axis is required

Multi-Axis Post Processors 7-212

 CAM Post Processor Guide 8/8/23

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));

 return;

 }

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 // get feedrate number

 var fMode = feedMode == FEED_INVERSE_TIME ? 93 : 94;

 var f = feedMode == FEED_INVERSE_TIME ? inverseTimeOutput.format(feed) :

feedOutput.format(feed);

 if (x || y || z || a || b || c) {

 writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), x, y, z, a, b, c, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 feedOutput.reset(); // force feed on next line

 } else {

 writeBlock(gFeedModeModal.format(fMode), gMotionModal.format(1), f);

 }

 }

}
onLinear5D Required Changes

You will need to reset the feedrate mode to FPM either at the end of the multi-axis operation or on a

standard 3-axis move. It is much easier to do this at the end of the section, otherwise you would have to

modify all instances that output feedrates, such as in onLinear, onCircular, onCycle, etc.

function onSectionEnd() {

…

 if (currentSection.isMultiAxis()) {

 writeBlock(gFeedModeModal.format(94)); // inverse time feed off

 }
Reset FPM Mode in onSectionEnd

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, y, z,

f);
Optionally Reset FPM Mode in All Output Blocks with Feedrates

It is possible that your machine control does not support standard inverse time or DPM feedrates. If this

is the case you will need to write your own function to handle multi-axis feedrates. The

getMultiAxisMoveLength function will assist in the movement length calculations required for

Multi-Axis Post Processors 7-213

 CAM Post Processor Guide 8/8/23

calculating multi-axis feedrates. It takes the current position for the linear and rotary axes and will

calculate the tool tip, linear axes, and rotary axes lengths of the move from the previous location.

var length = machineConfiguration.getMultiAxisLength(x, y, z, a, b, c);
Calculate the Length of the Multi-Axis Move

getMultiAxisMoveLength will return MoveLength obect, which can then be accessed using the following

functions to obtain the different move lengths.

Function Description

getRadialToolTipMoveLength Calculated tool endpoint movement along the actual tool path.

getLinearMoveLength Combined linear delta movement.

getRadialMoveLength Combined rotary delta movement.
MoveLength Functions

 var moveLength = getMultiAxisMoveLength(x, y, z, a, b, c);

 var toolTipLength = moveLength.getRadialToolTipMoveLength();

 var xyzLength = moveLength.getLinearMoveLength();

 var abcLength = moveLength.getRadialMoveLength();
Retrieve the Calculated Move Lengths for the Tool Tip, Linear Axes, and Rotary Axes

7.8 Polar Interpolation

Polar interpolation replaces a linear axis in a 3-axis milling operation with a rotary axis. Polar

interpolation can be used to keep machining operations within the limits of the machine or simplify the

output of circular milling/drilling operations. It is sometimes referred to as XZC interpolation since it is

quite common to replace the Y-axis with the C-axis.

It can be supported in the control, for example using G12.1 on Fanuc style controls or handled within the

post processor. Machine control polar interpolation is typically supported on Mill/Turn machines.

Multi-Axis Post Processors 7-214

 CAM Post Processor Guide 8/8/23

Sample Output Without and With Polar Interpolation

This section describes how to implement post processor generated polar interpolation support in your

post and how to activate it using a Manual NC command. The Haas Next Generation post processor has

polar interpolation implemented and can be used as a reference and to copy code from into your post.

7.8.1 Polar Interpolation Functions

The following functions are used with post generated polar interpolation. The setPolarMode and

setPolarFeedMode functions are defined in the post processor, all other functions are imbedded in the

post processor kernel.

Without Polar Interpolation

With Polar Interpolation

Without Polar Interpolation

With Polar Interpolation

Multi-Axis Post Processors 7-215

 CAM Post Processor Guide 8/8/23

Function Description

activatePolarMode(toler, angle, axis) Activates polar interpolation. tolerance specifies the

tolerance to use to keep the tool within the programmed

tool path. It is typically set to be tighter than the post

processor defined tolerance by a factor of 2 or 4

(tolerance / 2) to keep a smooth finish. angle defines the

current angle of the rotary axis used in polar

interpolation. axis defines the line that the tool can move

along during polar interpolation. A vector of (1, 0, 0)

keeps the tool along the X-axis.

deactivatePolarMode() Disables polar interpolation.

getPolarPosition(x, y, z) Returns the polar coordinates as a VectorPair for the

input x,y,z coordinates. The first vector is the XYZ

coordinates and the second vector is the ABC angles of

the polar position.

isPolarModeActive() Returns true if polar mode is in effect.

setCurrentPositionAndDirection(position) Sets the current XYZ and ABC position. position is a

VectorPair that contains the XYZ coordinates in the first

vector and the ABC angles in the second vector.

setPolarFeedMode(mode) Defines the feedrate mode for polar interpolation. This

will usually be set to either Inverse Time or DPM

feedrates depending on capabilities of the control. This

multi-axis feedrate mode only needs to be changed for

polar interpolation if the machine supports TCP and

outputs FPM (programmed) feedrates with multi-axis

moves. Polar interpolation is not output using TCP, so

requires a different feedrate mode in this case. mode

determines if polar interpolation is being activated (true)

or deactivated (false). This function must be defined in

the post processor.

setPolarMode(section, mode) Enables/disables polar interpolation mode for the

specified section. section should be set to currentSection.

mode can be set to true to enable polar interpolation or

false to disable it. This function must be defined in the

post processor.
Polar Interpolation Functions

The required polar interpolation variables and functions can be copied from the Haas Next Generation

post processor. These functions are bounded by the Start of polar interpolation and End of polar

interpolation comments.

// Start of polar interpolation

…

// End of polar interpolation
Copy the Required Polar Interpolation Code

Multi-Axis Post Processors 7-216

 CAM Post Processor Guide 8/8/23

Most of this code will not require any modification. You may want to change the line/vector that polar

interpolation will move along during generation of the polar coordinates. This is defined by the

polarDirection variable at the top of the copied code. It is set to the X-axis (1, 0, 0) by default.

// Start of polar interpolation

var usePolarMode = false; // controlled by manual NC operation, enables polar interpolation for a single operation

var polarDirection = new Vector(1, 0, 0); // vector to maintain tool at while in polar interpolation
Define the Axis Line for Polar Interpolation

You may have to modify the setPolarFeedMode to set the proper feedrate mode for polar interpolation.

If your machine does not support TCP, then this function can be blank and the same feedrate mode for

multi-axis and polar interpolation operations will be used.

function setPolarFeedMode(mode) {

 if (machineConfiguration.isMultiAxisConfiguration()) {

 machineConfiguration.setMultiAxisFeedrate(

 !mode ? multiAxisFeedrate.mode : getProperty("useDPMFeeds") ? FEED_DPM :

 FEED_INVERSE_TIME,

 multiAxisFeedrate.maximum,

 !mode ? multiAxisFeedrate.type : getProperty("useDPMFeeds") ? DPM_COMBINATION :

 INVERSE_MINUTES,

 multiAxisFeedrate.tolerance,

 multiAxisFeedrate.bpwRatio

);

 if (!receivedMachineConfiguration) {

 setMachineConfiguration(machineConfiguration);

 }

 }

}
setPolarFeedMode to Use when TCP is Supported

function setPolarFeedMode(mode) {

}
setPolarFeedMode to Use when TCP is Not Supported

7.8.2 Manual NC Command to Enable Polar Interpolation

The Action Manual NC usePolarMode command is used to enable polar interpolation for a single

operation and must be placed prior to this operation. Polar interpolation will be automatically cancelled

after this operation, but since polar interpolation is handled in the post processor, you can make changes

to make the command modal.

Multi-Axis Post Processors 7-217

 CAM Post Processor Guide 8/8/23

usePolarMode Manual NC Command

The usePolarMode Manual NC command is implemented in the onManualNC function.

function onManualNC(command, value) {

 switch (command) {

 case COMMAND_ACTION:

 if (String(value).toUpperCase() == "USEPOLARMODE") {

 usePolarMode = true;

 }

 break;

 default:

 expandManualNC(command, value);

 }

}
Implementing the usePolarMode Manual NC Command

7.8.3 Calculating the Polar Interpolation Initial Angle

The initial XYZ position and ABC angles for polar interpolation is calculated in the defineWorkPlane

function.

function defineWorkPlane(_section, _setWorkPlane) {

 var abc = new Vector(0, 0, 0);

 if (machineConfiguration.isMultiAxisConfiguration()) { // use 5-axis indexing for multi-axis mode

 if (isPolarModeActive()) { // calculate the initial ABC position for polar interpolation

 abc = getCurrentDirection();

 } else {

 abc = _section.isMultiAxis() ? _section.getInitialToolAxisABC() :

getWorkPlaneMachineABC(_section.workPlane, _setWorkPlane);

 }

 // polar interpolation is treated as a multi-axis operation

 if (_section.isMultiAxis() || isPolarModeActive()) {

 cancelTransformation();

 if (_setWorkPlane) {

 if (activeG254) {

Multi-Axis Post Processors 7-218

 CAM Post Processor Guide 8/8/23

 writeBlock(gFormat.format(255)); // cancel DWO

 activeG254 = false;

 }

 forceWorkPlane();

 positionABC(abc, true);

 }

 } else {
Calculating the Initial ABC Position for Polar Interpolation in defineWorkPlane

Polar interpolation converts a 3-axis operation to a multi-axis operation, so it must be treated as such.

This means that the rotary axis must be unlocked prior to the initial positioning move, but not clamped

afterwards. This is handled in the setWorkPlane function.

 if (!currentSection.isMultiAxis() && !isPolarModeActive()) {

 onCommand(COMMAND_LOCK_MULTI_AXIS);

 }
Don’t Lock the Rotary Axis During Polar Interpolation in setWorkPlane

There could be code in the onCommand function for unlocking the rotary axis that may need to be

changed also.

 case COMMAND_UNLOCK_MULTI_AXIS:

 var outputClampCodes = getProperty("useClampCodes") || currentSection.isMultiAxis()

 || isPolarModeActive();

 if (outputClampCodes && machineConfiguration.isMultiAxisConfiguration() &&

 (machineConfiguration.getNumberOfAxes() >= 4)) {
Unlocking the Rotary Axis During Polar Interpolation in onCommand

7.8.4 Initializing Polar Interpolation

The following modifications to onSection must be made to support polar interpolation. First, you need to

enable polar interpolation. This code is usually placed prior to the defineWorkPlane call.

 // enable polar interpolation

 if (usePolarMode && (tool.type != TOOL_PROBE)) {

 if (polarDirection == undefined) {

 error(localize("Polar direction property must be a vector - x,y,z."));

 return;

 }

 setPolarMode(currentSection, true);

 }

 defineWorkPlane(currentSection, false);

 var initialPosition = isPolarModeActive() ? getCurrentPosition() :

Multi-Axis Post Processors 7-219

 CAM Post Processor Guide 8/8/23

 getFramePosition(currentSection.getInitialPosition());

 forceAny();
Enabling Polar Interpolation in onSection

7.8.5 Disabling Polar Interpolation

Polar interpolation is disabled after each operation in the onSectionEnd function when it is only active

for a single operation.

 if (currentSection.isMultiAxis() || isPolarModeActive()) {

 writeBlock(gFeedModeModal.format(94)); // inverse time feed off

 if (currentSection.isOptimizedForMachine()) {

 // the code below gets the machine angles from previous operation. closestABC must also be set

to true

 currentMachineABC = currentSection.getFinalToolAxisABC();

 }

 if (operationSupportsTCP) {

 disableLengthCompensation(false, "TCPC OFF");

 }

 }

 …

 setPolarMode(currentSection, false);
Enabling Polar Interpolation in onSection

7.8.6 Enabling Polar Interpolation in Drilling Cycles

Polar interpolation is supported for both 3-axis milling operations and in drilling cycles. The milling

operations will be converted to multi-axis operations once polar interpolation is activated, calling

onRapid5D and onLinear5D linear motion. No modifications to these functions need to be made to

support polar interpolation.

Drilling cycle locations will still call onCyclePoint during polar interpolation, so modifications must be

made to output the rotary axis with the cycle positions. This is done by making the following

modification to the getCommonCycle function for the first point of a cycle operation.

function getCommonCycle(x, y, z, r, c) {

 forceXYZ();

 if (isPolarModeActive()) { // format polar interpolation position

 var polarPosition = getPolarPosition(x, y, z);

 return [xOutput.format(polarPosition.first.x), yOutput.format(polarPosition.first.y),

 zOutput.format(polarPosition.first.z),

 aOutput.format(polarPosition.second.x),

 bOutput.format(polarPosition.second.y),

Adding Support for Probing 8-220

 CAM Post Processor Guide 8/8/23

 cOutput.format(polarPosition.second.z),

 “R” + xyzFormat.format®];

 } else { // format linear interpolation position

 if (incrementalMode) {

 zOutput.format(c);

 return [xOutput.format(x), yOutput.format(y),

 "Z" + xyzFormat.format(z - r),

 "R" + xyzFormat.format(r - c)];

 } else {

 return [xOutput.format(x), yOutput.format(y),

 zOutput.format(z),

 "R" + xyzFormat.format(r)];

 }

 }

}
Formatting the Polar Interpolation Cycle Position in getCommonCycle

In the onCyclePoint function you need to format the cycle location for polar interpolation for the 2nd

through final cycle point.

// 2nd through nth cycle point

 } else {

 if (cycleExpanded) {

 expandCyclePoint(x, y, z);

 } else {

 if (isPolarModeActive()) { // format polar interpolation position

 var polarPosition = getPolarPosition(x, y, z);

 writeBlock(xOutput.format(polarPosition.first.x), yOutput.format(polarPosition.first.y),

 zOutput.format(polarPosition.first.z),

 aOutput.format(polarPosition.second.x), bOutput.format(polarPosition.second.y),

 cOutput.format(polarPosition.second.z));

 return;

 }
Formatting the Polar Interpolation Cycle Position in onCyclePoint

8 Adding Support for Probing
Fusion 360, Inventor CAM, and HSM have support for multiple styles of probing operations, including

WCS Probing, Geometry Probing, and Surface Inspection. While the probing capabilities are supported

by many of the library post processors, they are not supported by all of them and custom post processors

may not have these capabilities. This chapter discusses the required changes to a post processor to

support the probing operations.

Adding Support for Probing 8-221

 CAM Post Processor Guide 8/8/23

8.1 WCS Probing

WCS Probing is defined as probing operations that are used to probe the part for the purpose of defining

a Work Coordinate System. While all Autodesk CAM products support WCS Probing, you will find

these operations in a different area of the interface for each of the products.

 Fusion 360 Inventor CAM HSMWorks

You can check the post processor you are working with to see if it supports WCS Probing. The easiest

method is to try to run a probing operation against the post, the post will fail if probing is not supported.

You may see an error message complaining about the spindle speed being out of range (probe operations

do not turn on the spindle) or a message that states that the probing cycle must be handled in the post

processor.

Error: Spindle speed out of range.

Error at line: 735

Error in operation: 'WCS Probe1'

Failed while processing onSection() for record 261.

Spindle Speed Error Message

Error: The probe cycle 'probing-xy-outer-corner' is machine specific and must always be handled in

the post configuration.

Error in operation: 'WCS Probe1'

Failed while processing onCycle() for record 280.

Machine Specific Error Message

If you receive either of these messages, then probing is not supported in your post processor and you

will need to add it.

Adding Support for Probing 8-222

 CAM Post Processor Guide 8/8/23

8.1.1 Probing Operations

There is a sample model available for testing the probing logic in a post processor. In Fusion 360 it is

contained int the CAM Samples/Post Processor folder. This model contains a part designed for testing

probing cycles using the available WCS Probing operations.

Sample Probing Part

One thing you will notice when creating a probing operation is that interface is intelligent enough to

only give you the probing operation types that apply to the type of geometry selected. For example, if

you select a planar face perpendicular to the X-axis, then the only operations available to you are the X

surface and Angle along X-axis operations.

Intelligent Probe Selection

Adding Support for Probing 8-223

 CAM Post Processor Guide 8/8/23

The WCS Probing operations are considered a canned cycle in the post processor and therefore are

output in the onCyclePoint function, with the probe type being stored in the cycleType variable. The

following table lists the available probing operations. You should note that probing cycles cannot be

expanded and must be handled in the post processor, either by performing the cycle, by giving an error,

or by expanding the cycle in the post processor.

cycleType Description

probing-x Probes a wall perpendicular to the X-axis.

probing-y Probes a wall perpendicular to the Y-axis.

probing-z Probes a wall perpendicular to the Z-axis.

probing-x-wall Probes a wall thickness in the X-axis

probing-y-wall Probes a wall thickness in the Y-axis

probing-x-channel Probes the open distance between two walls in the X-axis

probing-y-channel Probes the open distance between two walls in the Y-axis

probing-x-channel-with-island Probes the open distance between two walls with an

island between the walls in the X-axis

probing-y-channel-with-island Probes the open distance between two walls with an

island between the walls in the Y-axis

probing-xy-circular-boss Probes the outer wall of a circular boss

probing-xy-circular-partial-boss Probes the outer wall of a circular boss that is not a

complete 360 degrees

probing-xy-circular-hole Probes the inner wall of a circular hole

probing-xy-circular-partial hole Probes the inner wall of a circular hole that is not a

complete 360 degrees

probing-xy-circular-hole-with-island Probes the inner wall of a circular hole with an island in

the hole

probing-xy-rectangular-boss Probes the outer walls of a rectangular protrusion

probing-xy-rectangular-hole Probes the inner walls of a rectangular hole

probing-xy-rectangular-hole-with-island Probes the inner walls of a rectangular hole with an island

in the hole

probing-xy-inner-corner Probes an inner corner. Modifies the origin and rotation

of the part.

probing-xy-outer-corner Probes an outer corner. Modifies the origin and rotation

of the part.

probing-x-plane-angle Probes a wall at an angle to the X-axis. Modifies the

rotation of the part.

probing-y-plane-angle Probes a wall at an angle to the Y-axis. Modifies the

rotation of the part.
Probing Cycles

The parameters defined in the WCS Probing operation are passed to the cycle functions using the cycle

object. The following variables are available and are referenced as ‘cycle.parameter’.

Adding Support for Probing 8-224

 CAM Post Processor Guide 8/8/23

Parameter Description

angleAskewAction This parameter will only be defined with an angular probing cycle

when the Askew box is checked. The only valid setting when it is

defined is the string stop-message.

approach1 The direction the probe moves at it approaches the part. It is a string

variable and can be either positive or negative.

approach2 The direction the probe moves as it approaches the part for the second

face of a multi-face operation. It is a string variable and can be either

positive or negative.

bottom The final depth position along the probe axis to touch the part.

clearance The height the probe rapids to on its way to the start of the probing

operation and the position it returns to after the probing operation is

finished.

depth The unsigned incremental distance from the top of the part along the

probe axis where the probe will touch the part.

feedrate The feedrate the probe will approach the part at.

hasAngleTolerance Set to 1 if an angular tolerance is specified. The angular tolerance is

stored in the toleranceAngle parameter.

hasPositionalTolerance Set to 1 if a positional tolerance is specified. The positional tolerance

is stored in the tolerancePosition parameter.

hasSizeTolerance Set to 1 if a size tolerance is specified. The size tolerance is stored in

the toleranceSize parameter.

incrementComponent Set to 1 if the Increment Component box is checked under Print

Results.

outOfPositionAction This parameter will only be defined when the Out of Position box is

checked. The only valid setting when it is defined is the string stop-

message.

printResults Set to 1 when the Print Results box is checked in the probing

operation.

probeClearance The approach distance in the direction of the probing operation. The

probe will be positioned at this clearance distance prior to

approaching the part.

probeOvertravel The maximum distance the probe can move beyond the expected

contact point and still record a measurement.

probeSpacing The probe spacing between points on the selected face for Angle style

probing.

retract The height to feed from to the probing level and to retract the probe to

after probing is finished.

stock The top of the part.

toleranceAngle The acceptable angular deviation of the geometric feature.

tolerancePosition The acceptable positional deviation of the geometric feature.

toleranceSize The acceptable size deviation of the geometric feature.

width1 The width of the boss or hole being probed.

Adding Support for Probing 8-225

 CAM Post Processor Guide 8/8/23

Parameter Description

width2 The width of the secondary walls (Y-axis) of a rectangular boss or

hole being probed.

wrongSizeAction This parameter will only be defined when probing a feature that

defines a fixed size and the Wrong Size box is checked. The only

valid setting when it is defined is the string stop-message.
Probing Parameters

8.1.2 Adding the Core Probing Logic

Adding WCS Probing support requires the main logic to output the probing cycle, supporting functions,

and some logic added to the main sections of the post processor. You should first open a post processor

that contains support for probing before starting to add probing to your post processor, since the logic

and most of the code will remain the same. Most of the generic post processors use Renishaw style

probing Macros (Fanuc, Haas, etc.), but there are also controls that support probing without the use of

these Macros, such as the Datron, Heidenhain, and Siemens controls. Be sure to start with closest match

to the machine you are creating a post processor for. The examples used in this chapter use the code for

the Renishaw style probing Macros.

The following functions support angular probing and safe probe positioning. They may have to be

modified to match the requirements of your control. The code shown is for a Fanuc style control. They

should be added prior to the onCyclePoint function.

Function Description

approach Converts the cycle approach string to a number (-1/1).

setProbeAngleMethod Determines the output method (G68, G54.4, rotational)

for angular probing cycles.

setProbeAngle Outputs the rotational blocks for angular probing cycles.

This output may have to be modified to match your

control.

protecedProbeMove Positions the probe in a protected mode (P9810).

getProbingArguments Formats the standard codes for all probing cycles based

on the probing cycle parameters. This function is usually

located after the onCyclePoint function and may have to

be modified to match your control.
Required Probe Functions

/** Convert approach to sign. */

function approach(value) {

…

}

function setProbeAngleMethod() {

…

Adding Support for Probing 8-226

 CAM Post Processor Guide 8/8/23

}

/** Output rotation offset based on angular probing cycle. */

function setProbeAngle() {

…

}

function protectedProbeMove(_cycle, x, y, z) {

 …

}

function getProbingArguments(cycle, updateWCS) {

…

}
Required Angular and Safe Positioning Probe Functions

The core logic for probing is in the onCyclePoint function. The first part of the code to copy into your

post is at the top of the onCyclePoint function.

 if (isProbeOperation()) {

 if (!useMultiAxisFeatures && !isSameDirection(currentSection.workPlane.forward, new Vector(0,

0, 1))) {

 if (!allowIndexingWCSProbing && currentSection.strategy == "probe") {

 error(localize("Updating WCS / work offset using probing is only supported by the CNC in the

WCS frame."));

 return;

 }

 }

 if (printProbeResults()) {

 writeProbingToolpathInformation(z - cycle.depth + tool.diameter / 2);

 inspectionWriteCADTransform();

 inspectionWriteWorkplaneTransform();

 if (typeof inspectionWriteVariables == "function") {

 inspectionVariables.pointNumber += 1;

 }

 }

 protectedProbeMove(cycle, x, y, z);

 }
Required Probing Code at Top of onCyclePoint

All probing operations are considered a separate operation and are not modal. The following code in the

onCyclePoint function should directly follow the required probing code you just added and needs to be

modified as shown in the highlighted code to support probing.

 if (isFirstCyclePoint() || isProbeOperation()) {

 if (!isProbeOperation()) {

Adding Support for Probing 8-227

 CAM Post Processor Guide 8/8/23

 // return to initial Z which is clearance plane and set absolute mode

 repositionToCycleClearance(cycle, x, y, z);

 }
Required Modifications for Probing Support

The code that outputs the probing calls is usually located after the drilling cycle logic in the main switch

block. Copy all code that contains the case statements for probing operations.

 switch (cycleType) {

 case “drilling”:

 …

 case “probing-x”: // copy from this line to before the “default” case

 …

 default:

Calling the Probe Macro

 Add the following code to the onCycleEnd function to end the probing operation.

function onCycleEnd() {

 if (isProbeOperation()) {

 zOutput.reset();

 gMotionModal.reset();

 writeBlock(gFormat.format(65), "P" + 9810, zOutput.format(cycle.retract)); // protected

retract move

 } else {

 …

}

8.1.3 Adding the Supporting Probing Logic

There are various locations that contain support logic for probing operations in the post processor.

Some of this code may already be in your post processor. The format used for the Probe WCS code

needs to be added at the top of the post where other formats are defined, if it is not already present in the

post processor.

var probeWCSFormat = createFormat({decimals:0, forceDecimal:true});
Required for Formatting the Probe WCS Code

The gRotationModal modal is used to manage the output of the rotation codes (G68, G68.2, etc.). It is

possible that this variable is already defined in the post processor, but may have to be updated to support

probing. It should be defined as shown.

var gRotationModal = createModal({

 onchange: function () {

Adding Support for Probing 8-228

 CAM Post Processor Guide 8/8/23

 if (probeVariables.probeAngleMethod == "G68") {

 probeVariables.outputRotationCodes = true;

 }

 }

}, gFormat); // modal group 16 // G68-G69
Defining the gRotationModal Modal

The following variables are used to control the output of probing features probing output and should be

defined in the fixed settings section at the top of the post processor.

var allowIndexingWCSProbing = false; // specifies probe WCS with tool orientation is supported

var probeVariables = {

 outputRotationCodes: false, // defines if it is required to output rotation codes

 probeAngleMethod : "OFF", // OFF, AXIS_ROT, G68, G54.4

 compensationXY : undefined

};
Add to Fixed Settings Section

Variable Description

allowIndexingWCSProbing Some controls do not allow for WCS probing operations when the tool

orientation is at an angle the XY-plane, i.e. the rotary tables are not at 0

degrees. If this is the case for your machine, then disable this variable

by defining it to be false. If WCS probing is allowed when the rotary

axes are not at 0 degrees, then set this variable to true.

outputRotationCodes Controls the output of the angular probing codes. This variable is

controlled by the post processor and should be set to false.

probeAngleMethod Defines the angular probing method to use. This method is usually

defined by the post processor in the setProbingAngleMethod function

and can be controlled by a post processor property. It should be set to

OFF. Other valid values are AXIS_ROT (used when a C-axis rotary

table is defined), G68 (the standard rotation method), or G54.4 (based

on the post processor property useG54x4).

compensationXY Controls the output of the XY compensation variables in angular

probing. This variable is controlled by the post processor and should be

set to undefined.
Probing Settings

Add the following variables to the collected state section at the top of the post processor.

var g68RotationMode = 0;

var angularProbingMode;
Add to Collected State Section

The following function and variable definition should be added prior to the onParameter function. The

onParameter function should also have the shown conditional added if it is not there.

Adding Support for Probing 8-229

 CAM Post Processor Guide 8/8/23

function printProbeResults() {

 return currentSection.getParameter("printResults", 0) == 1;

}

var probeOutputWorkOffset = 1;

function onParameter(name, value) {

 if (name == "probe-output-work-offset") {

 probeOutputWorkOffset = (value > 0) ? value : 1;

 }
Add Prior to and to onParameter Function

The following code needs to be added to the onSection function.

 if (tool.type != TOOL_PROBE) {

 var outputSpindleSpeed = insertToolCall || forceSpindleSpeed || isFirstSection() ||

 rpmFormat.areDifferent(spindleSpeed, sOutput.getCurrent()) ||

 (tool.clockwise != getPreviousSection().getTool().clockwise);

 …

 }
Don’t Output Spindle Speed with a Probe Tool

 setProbeAngle(); // output probe angle rotations if required

 // set coolant after we have positioned at Z

 setCoolant(tool.coolant);
Set Rotation Based on Angular Probing Results

 if (isProbeOperation()) {

 validate(probeVariables.probeAngleMethod != "G68", "You cannot probe while G68

Rotation is in effect.");

 validate(probeVariables.probeAngleMethod != "G54.4", "You cannot probe while workpiece

setting error compensation G54.4 is enabled.");

 writeBlock(gFormat.format(65), "P" + 9832); // spin the probe on

 inspectionCreateResultsFileHeader();

 } else {

 // surface Inspection

 if (isInspectionOperation() && (typeof inspectionProcessSectionStart == "function")) {

 inspectionProcessSectionStart();

 }

 }

 // define subprogram

 subprogramDefine(initialPosition, abc, retracted, zIsOutput);

 retracted = false;

Adding Support for Probing 8-230

 CAM Post Processor Guide 8/8/23

}
Add at the end of the onSection Function

Coolant should be disabled during probing operations, so make sure that the following conditional is in

the getCoolantCodes function.

function getCoolantCodes(coolant) {

 var multipleCoolantBlocks = new Array(); // create a formatted array to be passed into the outputted

line

 if (!coolants) {

 error(localize("Coolants have not been defined."));

 }

 if (isProbeOperation()) { // avoid coolant output for probing

 coolant = COOLANT_OFF;

 }
Disable Coolant for Probing Operations

The probe should be turned off and angular probing codes output in the onSectionEnd function.

function onSectionEnd() {

…

 if (isProbeOperation()) {

 writeBlock(gFormat.format(65), "P" + 9833); // spin the probe off

 if (probeVariables.probeAngleMethod != "G68") {

 setProbeAngle(); // output probe angle rotations if required

 }

 }

}

8.1.4 Adding Support for Printing Probe Results

A property can be added for controlling whether the probing results are output to a single file or in

separate files for each probe/inspection operation.

 singleResultsFile: {

 title : "Create single results file",

 description: "Set to false if you want to store the measurement results for each probe / inspection

toolpath in a separate file",

 group : 0,

 type : "boolean",

 value : true,

 scope : "post"

 }
Add a Property to Control the Output of the Probe Results into a Single or Multiple Files

Adding Support for Probing 8-231

 CAM Post Processor Guide 8/8/23

The following functions should be included if your control supports the printing of probing results. The

modifications that you already made to support probing will handle the calls to these functions to output

the probing results. These functions are defined consecutively and are usually located after the

writeRetract function.

var isDPRNTopen = false;

function inspectionCreateResultsFileHeader() {

…

}

function getPointNumber() {

…

}

function inspectionWriteCADTransform() {

…

}

function inspectionWriteWorkplaneTransform() {

…

}

function writeProbingToolpathInformation(cycleDepth) {

…

}
Include the Probing Results Functions

In the onClose function you will need to close the probe results file.

 if (isDPRNTopen) {

 writeln("DPRNT[END]");

 writeBlock("PCLOS");

 isDPRNTopen = false;

 if (typeof inspectionProcessSectionEnd == "function") {

 inspectionProcessSectionEnd();

 }

 }
Closing the Probing Results File

8.2 Geometry Probing

Geometry Probing behaves similarly to WCS Probing. It is used to measure geometric features on the

part during machining. The measured geometric features are checked against specified tolerances for

size and position. Based on the result, you can update the tool wear, or instruct the machine to stop

machining if the feature is out of tolerance. Geometry Probing is initiated using the Probe Geometry

operation listed in the PROBING menu.

Adding Support for Probing 8-232

 CAM Post Processor Guide 8/8/23

Geometry Probing Operation

The Pitch Circle Diameter (PCD) probing cycles are an addition to Geometry Probing that do not exist

in WCS Probing. Like all other probing cycles, the PCD cycle types are stored in the cycleType

variable.

cycleType Description

probing-xy-pcd-hole Probes holes around a PCD.

probing-xy-pcd-boss Probes bosses around a PCD.
Pitch Circle Diameter (PCD) Probing Cycles

PCD Probing Geometry

Like in WCS Probing, the parameters defined in the Geometry Probing operation are passed to the cycle

functions using the cycle object. These are in addition to the parameters defined for WCS Probing,

which are also available in Geometry Probing. The following variables are available and are referenced

as ‘cycle.parameter’.

Parameter Description

numberOfSubfeatures Number of geometric entities in a PCD probing operation.

pcdStartingAngle The starting angle of the first geometric entity to be probed in a PCD

probing operation.

toolDiameterOffset Defines the tool diameter offset register used to machine the feature.

toolLengthOffset Defines the tool length offset register used to machine the feature.

Adding Support for Probing 8-233

 CAM Post Processor Guide 8/8/23

Parameter Description

toolWearErrorCorrection The percentage of the deviation to update the tool wear by.

toolWearUpdateThreshold The minimum deviation that will trigger a tool wear update.

updateToolWear Enabled when tool wear compensation should be activated on the

controller.

widthFeature The diameter of the geometric feature for a PCD probing operation.

widthPCD The pitch circle diameter (PCD) of the geometric features.
Geometry Probing Parameters

To add Geometry Probing to your post you will first need to implement WCS Probing. After this there

are only minor changes required to support Geometry Probing.

The probeMultipleFeatures variable instructs the post engine that multiple geometric entities can be

probed in a single operation. The probing logic in all posts now support this feature, so it should be set

to true. It should be defined with the other post engine variables (allowedCircularPlanes, highFeedrate,

etc.).

highFeedrate = (unit == IN) ? 500 : 5000;

probeMultipleFeatures = true;
Enable the Probing of Multiple Geometric Entities

If the control supports PCD probing cycles be sure to include cases for these cycles in onCyclePoint,

where the other probing cycle code is located.

 case "probing-xy-pcd-hole":

 protectedProbeMove(cycle, x, y, z);

 writeBlock(

 gFormat.format(65), "P" + 9819,

 "A" + xyzFormat.format(cycle.pcdStartingAngle),

 "B" + xyzFormat.format(cycle.numberOfSubfeatures),

 "C" + xyzFormat.format(cycle.widthPCD),

 "D" + xyzFormat.format(cycle.widthFeature),

 "K" + xyzFormat.format(z - cycle.depth),

 "Q" + xyzFormat.format(cycle.probeOvertravel),

 getProbingArguments(cycle, false)

);

 if (cycle.updateToolWear) {

 error(localize("Action -Update Tool Wear- is not supported with this cycle."));

 return;

 }

 break;

 case "probing-xy-pcd-boss":

 protectedProbeMove(cycle, x, y, z);

 writeBlock(

 gFormat.format(65), "P" + 9819,

 "A" + xyzFormat.format(cycle.pcdStartingAngle),

Adding Support for Probing 8-234

 CAM Post Processor Guide 8/8/23

 "B" + xyzFormat.format(cycle.numberOfSubfeatures),

 "C" + xyzFormat.format(cycle.widthPCD),

 "D" + xyzFormat.format(cycle.widthFeature),

 "Z" + xyzFormat.format(z - cycle.depth),

 "Q" + xyzFormat.format(cycle.probeOvertravel),

 "R" + xyzFormat.format(cycle.probeClearance),

 getProbingArguments(cycle, false)

);

 if (cycle.updateToolWear) {

 error(localize("Action -Update Tool Wear- is not supported with this cycle."));

 return;

 }

 break;
PCD Probing Support in onCyclePoint

8.3 Inspect Surface

The Inspect Surface operation creates a probing strategy that specifies contact points across the surfaces

of the model to be measured by a probe while the part is still on the machine tool. The results can then

be imported and compared against the model to identify if the manufactured part is in or out of

tolerance.

Inspection streamlines the manufacturing process by letting you identify problem areas and decide on

any rework needed early in the process. It also helps to reduce the need to move parts between the

machine tool and a measuring device.

Surface Inspection is initiated using the Inspect Surface operation listed in the INSPECTION/PROBING

menu.

Inspect Surface Operation

If you wish to use the Inspect Surface operations, you will need a post processor that will allow you to

output and run these inspection paths on your machine. You can either use one of the generic Inspection

post processors available on the Post Library for Autodesk Fusion 360, or modify your current milling

post which is already set up for your machine to add in the inspection functionality. You will need to

add support for probing to your post processor before adding the inspection capabilities.

https://cam.autodesk.com/hsmposts?

Adding Support for Probing 8-235

 CAM Post Processor Guide 8/8/23

The Inspection post processors will have the inspection or inspect surface suffix appended to the name

of the post processor. These are the only post processors that support Inspect Surface operations. You

will need to use one of these generic posts as a source for adding the inspection code to your post

processor.

8.3.1 Inspect Surface Operations

Inspect Surface operations differ from the other probing operations, in that you will select points on the

face of the part to inspect instead of individual features of the part.

Surface Inspect Interface

The Surface Inspect operations are considered a cycle in the post processor and therefore call the

onCyclePoint function, though they are expanded in the inspectionCycleInspect function. The standard

cycleType variable to define the cycle type is not set for Surface Inspect operations, but rather the

isInspectionOperation function is used to determine if it is a Surface Inspection cycle. This is further

explained in the Adding the Supporting Surface Inspect Logic section. Unlike other cycles that pass a

single point to the onCyclePoint function, the Surface Inspect cycle will contain the following 3 points

per cycle location, with each location generating a separate and subsequent call to onCyclePoint.

Location How to determine Description

First isFirstCyclePoint() Safe move to approach inspection location

Second (default) Inspection move

Third isLastCyclePoint() Retract move
Three Points per Inspection Location

Adding Support for Probing 8-236

 CAM Post Processor Guide 8/8/23

8.3.2 Inspection Parameters

The parameters defined in the Inspect Surface operation are passed to the inspection functions using

either the cycle object or through section parameters (getParameter). These parameters are handled in

the core Surface Inspect functions that are copied from an existing inspection post processor. Standard

probing parameters can be referenced in the inspection functions.

The following variables are referenced as ‘cycle.parameter’.

Cycle Parameter Description

linkFeed The feedrate used to position between inspection locations.

measureFeed The feedrate used to approach the part.

nominalI The I-component of the vector normal to the surface inspection point.

nominalJ The J-component of the vector normal to the surface inspection point.

nominalK The K-component of the vector normal to the surface inspection point.

nominalX The X-axis position of the inspection point.

nominalY The Y-axis position of the inspection point.

nominalZ The Z-axis position of the inspection point.

outOfPositionAction This parameter will only be defined when the Out of Position box is

checked. The only valid setting when it is defined is the string stop-

message.

pointID The numeric ID of the inspection point.

safeFeed The feedrate at which to approach the part.
Inspection cycle Parameters

The following parameters are inspection specific and are prefixed with the operation: string. They are

referenced using the getParameter("operation:parameter ") function.

Parameter Description

inspectUpperTolerance The lower limit distance at which an inspected point is considered

within tolerance of the model.

inspectSurfaceOffset The positive or negative distance from the model from where

inspection points are measured.

inspectUpperTolerance The upper limit distance at which an inspected point is considered

within tolerance of the model.
Inspection Parameters

8.3.3 Adding the Core Inspect Surface Logic

Adding Surface Inspect support requires the main logic to be copied directly from a post processor that

already supports inspection, and logic added to the main sections of the post processor. You should first

open a post processor that contains support for inspection before starting to add Inspect Surface support

to your post processor, since the logic and most of the code will remain the same. As of this writing, the

following post processors have support for inspection, notice that all of them are named with the inspect

surface or inspection suffix.

Adding Support for Probing 8-237

 CAM Post Processor Guide 8/8/23

Post Library Name Filename

DATRON next Inspect Surface datron next inspect surface.cps

Fanuc Inspection fanuc inspection.cps

HAAS (pre-NGC) Inspect Surface haas inspect surface.cps

HAAS – Next Generation Control Inspect Surface haas next generation inspect surface.cps

Heidenhain Inspection heidenhain inspection.cps

Hurco Inspect Surface hurco inspect surface.cps

Results file generator for probing and inspect surface result generator inspect surface.cps

Siemens SINUMERIK 840D Inspection siemens 840D inspection.cps
Post Processors that Support Surface Inspect Operations

You can also search the online Post Library for Autodesk Fusion 360 to see if any other post processors

have been added with inspection capabilities.

Search for Posts that Support Surface Inspect Operations

The main code for Inspect Surface logic is located at the end of the post processor. You will need to

copy from the definition of capabilities located after the onClose or onTerminate function to the end of

the file and add this code to the end of your post processor.

capabilities = |= CAPABILITY_INSPECTION;

description = "HAAS - Next Generation Control Inspect Surface";

longDescription = "Generic post for the HAAS Next Generation control with inspect surface

capabilities.";
Copy From this Code to the End of the File for Core Surface Inspect Logic

https://cam.autodesk.com/hsmposts

Adding Support for Probing 8-238

 CAM Post Processor Guide 8/8/23

8.3.4 Adding the Supporting Inspect Surface Logic

There are a number of locations that contain support logic for Inspect Surface operations in the post

processor. You can refer to any of the generic post processors that support Inspect Surface operations

for an example on where this code is implemented.

Add the following code at the end of the onOpen function.

 // Probing Surface Inspection

 if (typeof inspectionWriteVariables == "function") {

 inspectionWriteVariables();

 }
Add to the End of the onOpen Function

For multi-axis machines it is important that an actual machine configuration is defined and is not reliant

on 3+2 plane codes and/or IJK output. Please refer to the Multi-Axis Post Processors section for a

description on implementing multi-axis support to your post processor.

At the end of the onSection function, but before any subprograms are defined, add the following code.

 if (isInspectionOperation(currentSection) && (typeof inspectionProcessSectionStart == "function"))

{

 inspectionProcessSectionStart();

 }
Initialize the Surface Inspect Operation

At the top of the onCyclePoint function add in the following code.

 if (isInspectionOperation(currentSection) && (typeof inspectionCycleInspect == "function")) {

 inspectionCycleInspect(cycle, x, y, z);

 return;

 }
Call the Controlling Surface Inspect Function

At the start of the onSectionEnd function add the following code. The writeBlock statement in this

example will differ between the machine post processors.

 if (isInspectionOperation() && !isLastSection()) {

 // the following logic will differ depending on the post processor

 writeBlock(gFormat.format(103), "P0", formatComment("LOOKAHEAD ON"));

 }
Finalize the Surface Inspect Operation

At the end of the onClose function, but before any subprogram statements, add the following code after

the results file is closed.

 if (typeof inspectionProgramEnd == "function") {

 inspectionProgramEnd();

 }

Additive Capabilities and Post Processors 9-239

 CAM Post Processor Guide 8/8/23

Finalize the Surface Inspect Program

9 Additive Capabilities and Post Processors
So far in this guide we’ve discussed post processors as they pertain to subtractive machining, but Fusion

360 also supports Additive FFF (fused filament fabrication) printers. This chapter discusses the basics

of selecting a machine capable of additive manufacturing, generating an additive tool path, creating

output, and the details of an additive post processor.

9.1 Getting Started

This section will give an overview of creating an Additive tool path but will not go into great detail on

all of the features of the Additive capabilities of Fusion 360, just enough to get you started on post

processing.

You will of course need a model that you want to print to start with. For the examples in this manual we

will use the Fusion Keychain model provided as a CAM sample with your installation of Fusion 360.

This model contains subtractive manufacturing operations which can be combined with Additive

manufacturing operations as long as your machine supports both capabilities.

Sample Additive Part

You will see the ADDITIVE tab on the MANUFACTURE ribbon. Selecting this tab will display the

Additive menus.

Additive Menus

Additive Capabilities and Post Processors 9-240

 CAM Post Processor Guide 8/8/23

9.1.1 Finding a Machine

The first step in creating an Additive tool path is to define the machine that you will be using. Unlike

Subtractive operations where the Machine Configuration is optional, it is required for Additive

operations. Pressing the Machine Library icon in the Additive menus will display the Machine Library

dialog. Select the Fusion 360 Library menu and check the Additive box to list the available Additive

machines. You can use the Search field or Vendor pull down menu to filter the machines that are

displayed. We will be using the Prusa i3 MK2 machine. You should drag this machine into your Local

library for both convenience and the ability to edit the machine.

Finding an Additive Machine and Storing in Your Local Library

Once you find your machine you may need to select the post processor and Print Settings that

correspond to this machine. The machines in the Fusion 360 Library should all be assigned to the

correct post processor for each machine, so it is rare that you would need to change the post processor.

If necessary, you can select/change the post processor by right clicking on the Prusa i3 MK3 machine

and choosing Change the selected post.

Additive Capabilities and Post Processors 9-241

 CAM Post Processor Guide 8/8/23

Selecting/Changing the Post Processor and Setting the Print Settings

The Post Library dialog will then be displayed. Select the Fusion 360 library and check the Additive

box to display only the post processors supporting the Additive capabilities. You will want to select the

Prusa I3 MK2 machine. You will need to drag this post processor into to your Local library if you plan

on editing it.

Selecting the Post Processor

You can also create linked folders on your computer to store both the machines and post processors.

You do this by right clicking on the Linked menu and selecting the Link Folder menu. A browser will

be displayed allowing you to select a folder to place your machines/posts.

Additive Capabilities and Post Processors 9-242

 CAM Post Processor Guide 8/8/23

Selecting a Local Folder for The Machines and Post Processors

To select the Print Settings for the printer, right click on the Prusa i3 MK3 machine and choose Select a

print setting. This will bring up the Print Setting Library dialog allowing you to either select an existing

print setting or creating a custom print setting. Print Settings must be stored in the Local library in order

to create or edit them.

Selecting the Print Setting

Once the Print Setting is in your local library you can edit it by pressing the button. Press the to

create a new Print Setting, you will be prompted to select an existing Print Setting to use as the template

for the new Print Setting.

Additive Capabilities and Post Processors 9-243

 CAM Post Processor Guide 8/8/23

Editing a Print Setting

9.1.2 Creating an Additive Setup

In the Fusion Keychain model you will notice that there is already a subtractive setup defined. For

machines that support both additive and subtractive machining you can define both types of operations

as long as they are in separate setups. The subtractive operations for these machines are exactly the same

as they would be for a purely subtractive (milling) machine. For this sample we will be ignoring the

subtractive setup and working with the additive only.

To create an Additive setup, press the Setup menu, change the Operation Type to Additive, and select the

configuration for your machine by pressing the Select… button under Machine.

Additive Capabilities and Post Processors 9-244

 CAM Post Processor Guide 8/8/23

Defining an Additive Setup

If you have not already assigned a post processor to this machine you will need to do so now. Do this

by pressing the Edit… button under the Machine prompt. The Machine Configuration will display,

change the Post location to Personal – local, and select the prusa.cps post processor from the Post

Processor drop down menu.

Associating a Post Processor to a Machine Configuration

You can select and/or edit the Print Settings directly from the Setup dialog when creating the Additive

Setup. The Print Settings are specific to the creation of the Additive toolpaths, with settings to modify

Additive Capabilities and Post Processors 9-245

 CAM Post Processor Guide 8/8/23

the bed temperature, nozzle temperature, layer thickness, infill style, etc. You can also create your own

default print settings by giving them a new name.

Defining the Print Settings

After creating the Setup you should see a representation of the machine base and envelope with the part

located on it. Feel free to rename the new setup to Additive so you know that this is an additive

operation. If you were going to do both additive and subtractive operations in the same model, then you

will want to move the Additive setup above the Subtractive setup.

Additive Capabilities and Post Processors 9-246

 CAM Post Processor Guide 8/8/23

Part Displayed on Machine

If the part is not in the location on the machine where you want it, you can easily reposition it using the

POSITION menus.

Positioning Menus

9.1.3 Creating and Simulating an Additive Operation

An Additive operation is automatically created when an Additive setup is created. You can see this

operation by expanding the Additive setup in the Browser. There can only be one Additive operation

per setup. You will need to generate the Additive Toolpath manually by selecting Generate from the

ACTIONS menus or by pressing Ctrl+G. This may take a while depending on the complexity of the

model.

Additive Capabilities and Post Processors 9-247

 CAM Post Processor Guide 8/8/23

Generating the Additive Toolpath

To simulate the Additive toolpath press the Simulate button in the ACTIONS menus. Additive toolpaths

simulate in the same manner as Subtractive toolpaths, but it is recommended that you place the cursor

over the green slide bar at the bottom of the window, hold down the left mouse button, and move the

mouse to the left and right to visualize the Additive process.

Simulating the Additive Toolpath

Additive Capabilities and Post Processors 9-248

 CAM Post Processor Guide 8/8/23

9.2 Creating a New Machine Configuration

When adding a new Additive post processor you will need to create a corresponding Machine

Configuration. You do this by copying an existing Machine Configuration into your Local library by

opening the Machine Library dialog, selecting the Machine Configuration you want to copy, and then

pasting it into your Local folder.

Copying a Machine Configuration

Once you create a copy of the Machine Configuration in your Local folder you will need to edit it and

describe your machine. Be sure to give it a unique name and description and go through all sections to

properly define the machine.

Additive Capabilities and Post Processors 9-249

 CAM Post Processor Guide 8/8/23

Duplicating and Editing the Machine Configuration

After creating your Machine Configuration you will need to copy a seed post into a local folder, for

example prusa.cps, and give it a meaningful name. You can then assign this post processor to your

machine. You can also select the default output folder for your G-code files when posting.

Assigning a Post Processor to Your Additive Machine

You are now ready to edit your post processor.

9.3 Additive Common Properties

The additive post processors have properties that are common to most of them. These properties are

listed in the following table.

Additive Capabilities and Post Processors 9-250

 CAM Post Processor Guide 8/8/23

Title Property Description

Relative extrusion mode relativeExtrusion Selects between an absolute or relative extrusion mode.

Trigger _trigger Specifies the method used to trigger a change of

extruder temperature. It can be disabled or controlled

by the Z-height or layer number.

Trigger Value _triggerValue Specifies the Z-height difference or layer number

increment to trigger an extruder temperature change.

Start Temperature tempStart The starting temperature in Celsius for the extruder,

overrides the starting temperature in the Print Settings.

Temperature Interval tempInterval The degrees in Celsius to increase the temperature of

the extruder for each trigger event.
Common Additive Properties

The Temperature Tower properties are typically used to test new filaments in order to identify the best

printing temperatures. These properties are listed in the Temperature Tower group.

9.4 Additive Variables

There are variables that are specific to Additive machines. These variables are either globally defined or

are accessed through function calls. The following table lists the variables available for Additive

machines.

Variable Description

bedTemp Temperature of bed.

commands Post processor defined variable that defines the codes that are output for

additive commands.

Extruder An unnamed object that contains the extruder definition. This object is

obtained by calling the getExtruder function.

layerCount Number of printed layers for entire printing operation.

machineConfiguration The Machine Configuration definition.

numberOfExtruders Number of extruders used.

partCount Number of bodies created during printing.

printTime The amount of time the print should take.

settings Post processor defined variable that defines settings specific to additive

machines.
Global Additive Variables

The post processor defined variables are defined in the getPrinterGeometry function from the

machineConfiguration settings and are typically in all Additive post processors.

9.4.1 The machineConfiguration Object

The machineConfiguration object is standard between all machine types, milling, turning, additive, etc.

machineConfiguration settings are always referenced using a function. The variables returned from the

functions are described in the following table.

Additive Capabilities and Post Processors 9-251

 CAM Post Processor Guide 8/8/23

MachineConfiguration Function Description

getCenterPositionX(id) The center of the printer table in X.

getCenterPositionY(id) The center of the printer table in Y.

getCenterPositionZ(id) The center of the printer table in Z.

getExtruderOffsetX(id) The offset in X from the reference extruder.

getExtruderOffsetY(id) The offset in Y from the reference extruder.

getExtruderOffsetZ(id) The offset in Z from the reference extruder.

getVendor() Th manufacturer of the printer.

getModel() The model type of the printer.

getNumberExtruders() Number of defined extruders.

getWidth() The width of the machine in X.

getDepth() The depth of the machine in Y.

getHeight() The height of the machine in z.
machineConfiguration Functions used for Additive

9.4.2 The Extruder Object

There is not really a named Extruder object, meaning you cannot use the new Extruder syntax to create

an object as you would a Vector, but there is the getExtruder function that will return an unnamed object

that has extruder specific variables. Each extruder can be referenced by passing the extruder number to

the getExtruder function.

 var totalLength = getExtruder(1).extrusionLength;
Get the Total Length of Material Used for Extruder 1

The following table defines the variables accessible using the getExtruder function

Extruder Variable Description

extrusionLength Total length of material used for this extruder

during printing.

filamentDiameter The diameter of the filament material.

materialName The name of the material used for the extruder.

nozzleDiameter The diameter of the extruder nozzle.

temperature The temperature setting for the extruder.
Extruder Variables

9.4.3 The commands Object

The commands object is defined in the post processor and defines the output codes for common additive

commands. Define the proper code to be output for each command in this definition. Some of the

commands may have specifiers that define subcommands, such as on and off for fan. The following

table lists the commands supported by the library additive post processors.

Additive Capabilities and Post Processors 9-252

 CAM Post Processor Guide 8/8/23

The code values can be a formatted number or a text string. If a command does not exist for your

printer, then define the code as undefined.

// Specify the required commands for your printer below.

var commands = {

 extruderChangeCommand : undefined, // command to change the extruder

 setExtruderTemperature: mFormat.format(104), // command to set the extruder

temperature

 waitExtruder : mFormat.format(109), // wait command for the extruder

temperature

 setBedTemperature : mFormat.format(140), // set the bed temperature

 waitBed : mFormat.format(190), // wait for the bed temperature

 reportTemperatures : undefined, // report the temperatures to the printer

 fan : {on:mFormat.format(106), off:mFormat.format(107)},

 extrusionMode : {relative:mFormat.format(83),

 absolute:mFormat.format(82)} // extrusion mode

};
commands Definition

commands Variable Description

extruderChangeCommand Command to change the extruder.

setExtruderTemperature Command to set the extruder temperature.

waitExtruder The wait command when setting the extruder

temperature.

setBedTemperature Command to set the bed temperature.

waitBed The wait command when setting the bed

temperature.

reportTemperatures Command to report the temperatures to the

printer.

Fan Commands to turn the fan on and off, defined

using the syntax {on:---, off:---}.

extrusionMode Commands to select either relative or absolute

filament extrusion modes, defined using the

syntax {relative:---, absolute:---}.
The commands Object

9.4.4 The settings Object

The settings object is post processor defined and defines fixed settings that are not controlled by post

properties.

var settings = {

 useG0 : true, // use G0 or G1 commands for rapid movements

 maximumExtruderTemp: 260 // specifies the maximum extruder temperature

};
settings Definition

settings Variable Description

Additive Capabilities and Post Processors 9-253

 CAM Post Processor Guide 8/8/23

useG0 Specifies whether to use G0 (true) or G1 (false)

for rapid moves.

maximumExtruderTemp Sets the maximum extruder temperature.
The settings Object

9.5 Additive Entry Functions

Additive post processors use most of the common Entry functions for Subtractive posts, with some

specialized Entry functions for Additive post processors only. Remember that Entry functions are called

from the post processor kernel based on the record type in the intermediate file, so this means that there

is a difference between Subtractive and Additive intermediate files.

The following table defines the unique or modified Entry Functions for Additive post processors. You

can reference the table in the subtractive Entry Functions section for a description of the common entry

functions.

Entry Function Invoked When …

onAcceleration(travel, printing, retract) Acceleration is changed in an additive pass.

onBedTemp(temp, wait) Bed temperature change.

onCircularExtrude(_clockwise, _cx, _cy, _cz,

 _x, _y, _z, _f, _e)

Additive circular pass.

onClose() End of post processing.

onExtruderChange(id) Change of extruders.

onExtruderTemp(temp, wait, id) Extruder temperature change.

onExtrusionReset(length) Resets the length of the extrusion material used.

onFanSpeed(speed, id) Change of fan speed.

onJerk(x, y, z, e) The axis jerk is changed in an additive pass.

onLayer(layer) Change of layer level.

onMaxAcceleration(x, y, z, e) Max axis acceleration is changed in an additive pass.

onOpen() Post processor initialization.

onLinearExtrude(x, y, z, f, e) Additive pass.

onParameter(string, value) Each parameter setting.

onRapid(x, y, z) Positioning Rapid move.

onSection() Start of an operation.

Additive Entry Functions

Many of the entry functions will get their arguments and settings from either the Machine Configuration

or Print Settings. These dialogs can be accessed by pressing the right mouse button when over the

Additive setup and selecting Edit.

Additive Capabilities and Post Processors 9-254

 CAM Post Processor Guide 8/8/23

Editing the Setup

This will display the Setup dialog, where you can select to edit either the Machine Configuration

(described in the previous section) or Print Settings. You can also display the Print Settings dialog by

pressing the Print Settings button in the Additive menus.

Editing the Print Settings

9.5.1 Global Section

The global section for an Additive post is consistent with the standard global section for Subtractive

posts, it contains the description of the post processor and machine, its capabilities, kernel settings,

property table, and global variables. The capabilities of the post must be set to

CAPABILITY_ADDITIVE.

Additive Capabilities and Post Processors 9-255

 CAM Post Processor Guide 8/8/23

capabilities = CAPABILITY_ADDITIVE;

// capabilities = CAPABILITY_ADDITIVE | CAPABILITY _MILLING; // additive & subtractive
Setting the Post Processor Capabilities to Additive

The common global variables found in an Additive post are defined in the Additive Variables section.

9.5.2 onOpen

function onOpen()

The onOpen function is called at the start of post processing and is used to define settings and output

startup blocks. It usually varies from machine to machine.

1. Define settings

2. Output machine and program description

3. Output initial startup codes

Following is an example onOpen function.

function onOpen() {

 setFormats(MM); // machine require input code in MM

 // output machine and program description

 if (typeof writeProgramHeader == "function") {

 writeProgramHeader();

 }

 // output start of program codes

 writeBlock(gFormat.format(unit == MM ? 21 : 20)); // set unit

 writeBlock("M115 U3.0.10 ; tell printer latest fw version");

 if (getProperty("printerModel") == "i3mk2mk3") {

 writeBlock(gFormat.format(28), "W ; home all without mesh bed level");

 } else if (getProperty("printerModel") == "mini") {

 writeBlock(gFormat.format(28), "; home all without mesh bed level");

 }

}
Example onOpen Function

9.5.3 onSection

function onSection() {

The onSection function is called at the start of each Additive operation and outputs the starting codes for

an Additive operation. It usually varies from machine to machine.

function onSection() {

Additive Capabilities and Post Processors 9-256

 CAM Post Processor Guide 8/8/23

 // probe bed after heating

 if (getProperty("printerModel") == "i3mk2mk3") {

 writeBlock(gFormat.format(80), "; mesh bed leveling");

 } else if (getProperty("printerModel") == "mini") {

 writeBlock(gFormat.format(29), "; mesh bed leveling");

 }

 // output start of operation codes

 writeBlock(gFormat.format(92), eOutput.format(0));

 writeBlock(gAbsIncModal.format(90)); // absolute spatial co-ordinates

 writeBlock(getCode(getProperty("relativeExtrusion") ? commands.extrusionMode.relative :

commands.extrusionMode.absolute));

}
Sample onSection Function

9.5.4 onClose

function onClose() {

The onClose function is called at the end of the last operation. It is used to output the end-of-program

codes. It usually varies from machine to machine.

function onClose() {

 // output end-of-program codes

 writeBlock("G4 ; wait");

 xOutput.reset();

 yOutput.reset();

 if (getProperty("printerModel") == "i3mk2mk3") {

 writeBlock(gMotionModal.format(1), xOutput.format(0),

 yOutput.format(toPreciseUnit(200, MM)), "; home X axis");

 } else if (getProperty("printerModel") == "mini") {

 writeBlock(gMotionModal.format(1), xOutput.format(0),

 yOutput.format(toPreciseUnit(150, MM)), "; home X axis");

 }

 writeBlock(mFormat.format(84), "; disable motors");

}
Sample onClose Function

9.5.5 onBedTemp

function onBedTemp(temp, wait) {

Arguments Description

temp The bed temperature in Celsius.

wait Set to true when the machine should wait for the bed to warm up.

Additive Capabilities and Post Processors 9-257

 CAM Post Processor Guide 8/8/23

The onBedTemp function is called multiple times during a toolpath. At the start of the operation

onBedTemp is called with wait set to false to start heating the bed. It is called a second time prior to the

start of the toolpath with wait set to true so that the machine waits for it to reach the targeted

temperature. It will also be called at the end of the program to turn off the heating of the bed.

The maximum bed temperature is defined in the Limits tab when defining the Machine Configuration in

Fusion 360. The onBedTemp function is common to most additive posts.

function onBedTemp(temp, wait) {

 if (wait) {

 writeBlock(getCode(commands.reportTemperatures));

 writeBlock(getCode(commands.waitBed), sOutput.format(temp));

 } else {

 writeBlock(getCode(commands.setBedTemperature), sOutput.format(temp));

 }

}
onBedTemp Function

9.5.6 onExtruderTemp

function onExtruderTemp(temp, wait, id) {

Arguments Description

temp The extruder temperature in Celsius.

wait Set to true when the machine should wait for the extruder to warm up.

id Extruder number to set the temperature for. The first extruder is 0.

The onExtruderTemp function is called multiple times during a toolpath. At the start of the operation

onExtruderTemp is called with wait set to false to start heating the extruder. It is called a second time

prior to the start of the toolpath with wait set to true so that the machine waits for it to reach the targeted

temperature. It will also be called at the end of the program to turn off the heating of the extruder.

The desired extruder temperature is defined in the Extruder tab of the Print Settings dialog. The

maximum extruder temperature is set in the Extruder Configuration tab when defining the Machine

Configuration in Fusion 360. The onExtruderTemp function is common to most additive posts.

function onExtruderTemp(temp, wait, id) {

 if (typeof executeTempTowerFeatures == "function" && getProperty("_trigger") != undefined) {

 if (getProperty("_trigger") != "disabled" && (getCurrentPosition().z == 0)) {

 temp = getProperty("tempStart"); // override temperature with the starting temperature

 }

 }

 if (wait) {

 writeBlock(getCode(commands.reportTemperatures));

Additive Capabilities and Post Processors 9-258

 CAM Post Processor Guide 8/8/23

 writeBlock(getCode(commands.waitExtruder), sOutput.format(temp), tFormat.format(id));

 } else {

 writeBlock(getCode(commands.setExtruderTemperature), sOutput.format(temp),

 tFormat.format(id));

 }

}
onExtruderTemp Function

9.5.7 onExtruderChange

function onExtruderChange(id) {

Arguments Description

id Extruder number to activate. The first extruder is 0.

The onExtruderChange function handles a switch between extruders, similar to a tool change in a

subtractive machine. The number of extruders is defined in the Information tab when defining the

Machine Configuration in Fusion 360. The onExtruderChange function is common to most additive

posts.

function onExtruderChange(id) {

 if (id > machineConfiguration.getNumberExtruders()) {

 error(subst(localize("This printer does not support the extruder '%1'."), integerFormat.format(id)));

 return;

 }

 writeBlock(getCode(commands.extruderChangeCommand), tFormat.format(id));

 activeExtruder = id;

 forceXYZE();

}
Sample onExtruderChange Function

9.5.8 onExtrusionReset

function onExtrusionReset(length) {

Arguments Description

length Length of the additive material used for the active extruder.

The onExtrusionReset function will be called to reset the length of the used additive material when the

active extruder changes. At the beginning of the program it will be called with a value of 0 and when

switching between one extruder and another it will pass the length of additive material used for the

newly activated extruder. The onExtruderChange function is common to most additive posts.

function onExtrusionReset(length) {

 if (getProperty("relativeExtrusion")) {

Additive Capabilities and Post Processors 9-259

 CAM Post Processor Guide 8/8/23

 eOutput.format(0);

 eOutput.format(0);

 }

 eOutput.reset();

 writeBlock(gFormat.format(92), eOutput.format(length));

}
onExtrusionReset Function

9.5.9 onFanSpeed

function onFanSpeed(speed, id) {

Arguments Description

speed The fan speed as a percentage of the default speed in the range of 0-255.

id Extruder number to set the fan speed for, typically the active extruder.

The onFanSpeed function is used to turn on and off the fan used for cooling the extruded material. The

fan is controlled starting at the layer after the number of disabled layers defined in the Cooling tab of the

Print Settings dialog. The onFanSpeed function is common to most additive posts.

function onFanSpeed(speed, id) {

 if (!commands.fan) {

 return;

 }

 if (speed == 0) {

 writeBlock(getCode(commands.fan.off));

 } else {

 writeBlock(getCode(commands.fan.on), sOutput.format(speed));

 }

}
onFanSpeed Function

9.5.10 onAcceleration

function onAcceleration(travel, printing, retract) {

Arguments Description

travel The travel acceleration, used for positioning moves.

printing Printing acceleration, used for extrusion moves.

retract Retract acceleration, used for extruder retract moves.

The onAcceleration function is invoked when the acceleration changes in an Additive toolpath. The

acceleration values are provided in (velocity_change/seconds)².

Additive Capabilities and Post Processors 9-260

 CAM Post Processor Guide 8/8/23

// set the current acceleration rate for the move types

function onAcceleration(travel, printing, retract) {

 writeBlock(mFormat.format(204), "P" + integerFormat.format(printing), "T" +

 integerFormat.format(travel), "R" + integerFormat.format(retract));

}

onAcceleration Function

9.5.11 onMaxAcceleration

function onMaxAcceleration(x, y, z, e) {

Arguments Description

x The maximum acceleration along X.

y The maximum acceleration along Y.

z The maximum acceleration along Z.

e The maximum acceleration of the extrusion.

The onMaxAcceleration function is invoked when the maximum axis acceleration changes in an

Additive toolpath. The acceleration values are provided in (velocity_change/seconds)².

// set the maximum acceleration for each axes

function onMaxAcceleration(x, y, z, e) {

 writeBlock(mFormat.format(201), "X" + integerFormat.format(x), "Y" +

 integerFormat.format(y), "Z" + integerFormat.format(z), "E" + integerFormat.format(e));

}

onMaxAcceleration Function

9.5.12 onJerk

function onJerk(x, y, z, e) {

Arguments Description

x The X-axis jerk.

y The Y-axis jerk.

z The Z-axis jerk.

e The extruder jerk.

The onJerk function is invoked when the axis jerk changes in an Additive toolpath. The jerk control

values are provided in velocity_jerk/seconds.

// jerk control

function onJerk(x, y, z, e) {

 writeBlock(mFormat.format(205), "X" + integerFormat.format(x), "Y" + integerFormat.format(y),

Additive Capabilities and Post Processors 9-261

 CAM Post Processor Guide 8/8/23

 "Z" + integerFormat.format(z), "E" + integerFormat.format(e));

}
onJerk Function

9.5.13 onLayer

function onLayer(layer) {

Arguments Description

Layer Current layer being printed.

The onLayer function is called for every printed layer and passes in the active layer. It can be used to

output a comment prior to the toolpath for each layer and/or to increment a counter on the machine

control to show the printing progress. The onLayer function is common to most additive posts.

function onLayer(num) {

 if (typeof executeTempTowerFeatures == "function") {

 executeTempTowerFeatures(num);

 }

 writeComment("Layer : " + integerFormat.format(num) + " of " +

integerFormat.format(layerCount));

}
Sample onLayer Function

9.5.14 onParameter

function onParameter(name, value) {

Arguments Description

name Parameter name.

value Value stored in the parameter.

The onParameter function behaves the same as it does in a Subtractive post processor, but there is one

parameter that is specific to Additive machines. This is the feedRate parameter that defines the travel

speed that the machine will move when positioning without extruding material and for extruder changes.

The onParameter function is common to all additive posts.

function onParameter(name, value) {

 switch (name) {

 case "feedRate":

 rapidFeedrate = toPreciseUnit(value > highFeedrate ? highFeedrate : value, MM);

 break;

 }

}
onParameter Function

Additive Capabilities and Post Processors 9-262

 CAM Post Processor Guide 8/8/23

9.5.15 onRapid

function onRapid(_x, _y, _z) {

Arguments Description

_x, _y, _z The tool position.

The onRapid function handles positioning moves, which do not extrude the additive material. The

output of the onRapid function usually outputs a single block for the positioning move. The onRapid

function is common to all additive posts.

var rapidFeedrate = highFeedrate;

function onRapid(_x, _y, _z) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var f = feedOutput.format(rapidFeedrate);

 if (x || y || z || f) {

 writeBlock(gMotionModal.format(settings.useG0 ? 0 : 1), x, y, z, f);

 feedOutput.reset();

 }

}
onRapid Function

9.5.16 onLinearExtrude

function onLinearExtrude(_x, _y, _z, _f, _e) {

Arguments Description

_x, _y, _z The tool position.

_f The feedrate.

_e Length of additive material to extrude during the move.

The onLinearExtrude function handles linear moves that extrude the additive material. The tool

position, feedrate and length of material to extrude are passed as the arguments. The onLinearExtrude

function is common to all additive posts.

function onLinearExtrude(_x, _y, _z, _f, _e) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var f = feedOutput.format(_f);

 var e = eOutput.format(_e);

Additive Capabilities and Post Processors 9-263

 CAM Post Processor Guide 8/8/23

 if (x || y || z || f || e) {

 writeBlock(gMotionModal.format(1), x, y, z, f, e);

 }

}
onLinearExtrude Function

9.5.17 onCircularExtrude

function onCircularExtrude(_clockwise, _cx, _cy, _cz, _x, _y, _z, _f, _e) {

Argument Description

_clockwise Set to true if the circular direction is in the clockwise direction, false if

counter-clockwise.

_cx, _cy, _cz Center coordinates of circle.

_x, _y, _z Final point on circle

_f The feedrate.

_e Length of additive material to extrude during the move.

The onCircularExtrude function handles circular moves that extrude the additive material. The tool

circle parameters, position, feedrate and length of material to extrude are passed as the arguments. The

onCircularExtrude function is common to all additive posts.

function onCircularExtrude(_clockwise, _cx, _cy, _cz, _x, _y, _z, _f, _e) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var f = feedOutput.format(_f);

 var e = eOutput.format(_e);

 var start = getCurrentPosition();

 var i = iOutput.format(_cx - start.x, 0);

 var j = jOutput.format(_cy - start.y, 0);

 switch (getCircularPlane()) {

 case PLANE_XY:

 writeBlock(gMotionModal.format(_clockwise ? 2 : 3), x, y, i, j, f, e);

 break;

 default:

 linearize(tolerance);

 }

}
onCircularExtrude Function

Additive Capabilities and Post Processors 9-264

 CAM Post Processor Guide 8/8/23

9.6 Common Additive Functions

There are non-entry functions that are common to Additive post processors. Some of these are defined

in the post processor kernel and some in the post processor itself. The following sections describes these

functions.

9.6.1 getExtruder

function getExtruder(id) {

Arguments Description

id Extruder number to get information about.

The getExtruder function returns the Extruder variable, which includes information about the specified

extruder. Unlike the entry functions where the extruder base is 0, in the getExtruder function the first

extruder is referenced as id=1, the second as id=2, etc.

 writeComment("Material used: " + dimensionFormat.format(getExtruder(1).extrusionLength));

 writeComment("Material name: " + getExtruder(1).materialName);

 writeComment("Filament diameter: " + dimensionFormat.format(getExtruder(1).filamentDiameter));

 writeComment("Nozzle diameter: " + dimensionFormat.format(getExtruder(1).nozzleDiameter));
Sample Calls to getExtruder

9.6.2 isAdditive

function isAdditive() {

Returns true if any of the operations in the part are Additive in nature.

9.6.3 executeTempTowerFeatures

function executeTempTowerFeatures(num) {

Arguments Description

num The event that triggered the need to change the temperature. It is set to 1 on

the first call and then successive numbers on the remaining calls.

The executeTempTowerFeatures function is defined in the post processor and sets the temperature based

on the event specified by num. The initial value is 1 and ascends by 1 in each successive call. The

executeTempTowerFeatures function is common to all additive posts that support Temperature Tower

features.

var nextTriggerValue;

var newTemperature;

var maximumExtruderTemp = 260;

function executeTempTowerFeatures(num) {

 if (settings.maximumExtruderTemp != undefined) {

Deposition Capabilities and Post Processors 10-265

 CAM Post Processor Guide 8/8/23

 maximumExtruderTemp = settings.maximumExtruderTemp;

 }

 if (getProperty("_trigger") != "disabled") {

 var multiplier = getProperty("_trigger") == "height" ? 100 : 1;

 var currentValue = getProperty("_trigger") == "height" ?

 xyzFormat.format(getCurrentPosition().z * 100) : (num - 1);

 if (num == 1) { // initialize

 nextTriggerValue = getProperty("_triggerValue") * multiplier;

 newTemperature = getProperty("tempStart");

 } else {

 if (currentValue >= nextTriggerValue) {

 newTemperature += getProperty("tempInterval");

 nextTriggerValue += getProperty("_triggerValue") * multiplier;

 if (newTemperature <= maximumExtruderTemp) {

 onExtruderTemp(newTemperature, false, activeExtruder);

 } else {

 error(subst(

 localize("Requested extruder temperature of '%1' exceeds the maximum value of '%2'."),

 newTemperature, maximumExtruderTemp)

);

 }

 }

 }

 }

}
executeTempTowerFeatures Function

 if (typeof executeTempTowerFeatures == "function") {

 executeTempTowerFeatures(num);

 }
Sample Calls to executeTempTowerFeatures

10 Deposition Capabilities and Post Processors
Another additive capability supported by Fusion 360 and the post processor is multi-axis deposition, for

example Directed Energy Deposition (DED). This technology is used to build up a part feature using a

metal depositing method. This chapter discusses the basics of generating a deposition tool path, creating

output, and the details of a deposition post processor.

10.1 Getting Started

This section will give an overview of creating a Deposition tool path using the multi-axis Feature

Construction operation inside of Fusion 360. It will not go into great detail on all of the features of the

Deposition capabilities of Fusion 360, just enough to get you started on post processing.

Deposition Capabilities and Post Processors 10-266

 CAM Post Processor Guide 8/8/23

You will of course need a model to start with. For the examples in this manual, we will use the Fusion

Keychain model provided as a CAM sample with your installation of Fusion 360. This model contains

subtractive manufacturing operations which can be combined with Additive manufacturing operations as

long as your machine supports both capabilities.

Sample Deposition Part

You will see the ADDITIVE tab on the MANUFACTURE ribbon. Selecting this tab will display the

Additive menus.

10.1.1 Finding a Machine

The first step in creating a Deposition tool path is to define the machine that you will be using. Unlike

Subtractive operations where the Machine Configuration is optional, it is required for Deposition

operations since they are considered Additive operations. Pressing the Machine Library icon in the

Additive menus will display the Machine Library dialog. Select the Fusion 360 Library menu and

check the Additive box under Capabilities and the DED box under Technologies. to list the available

Deposition machines. Fusion 360 comes with a single DED machine. You should drag this machine

into your Local library for both convenience and the ability to edit the machine.

Deposition Capabilities and Post Processors 10-267

 CAM Post Processor Guide 8/8/23

Finding a DED Machine and Storing in Your Local Library

Once you find your machine you will need to select the post processor that corresponds to this machine.

You can select/change the post processor by right clicking on the Autodesk Generic DED machine and

choosing Select a post.

Selecting/Changing the Post Processor

The Post Library dialog will then be displayed. Select the Fusion 360 library and check the Additive

box to display only the post processors supporting the Additive capabilities. For training purposes, you

will select the Deposition sample post processor. This post processor is not a full post processor, but

Deposition Capabilities and Post Processors 10-268

 CAM Post Processor Guide 8/8/23

rather a template used to modify an existing post processor to include Deposition support. The post

modification will be discussed later in this chapter.

Selecting the Post Processor

You can also create linked folders on your computer to store both the machines and post processors.

You do this by right clicking on the Linked menu and selecting the Link Folder menu. A browser will

be displayed allowing you to select a folder to place your machines/posts.

Selecting a Local Folder for The Machines and Post Processors

10.1.2 Creating an Additive Setup for Deposition

In the Fusion Keychain model you will notice that there is already a subtractive setup defined. For

machines that support both additive and subtractive machining you can define both types of operations

as long as they are in separate setups. The subtractive operations for these machines are exactly the same

as they would be for a purely subtractive (milling) machine. For this sample we will be ignoring the

subtractive setup and working with the additive only.

To create an Additive setup, press the Setup menu, change the Operation Type to Additive, and select the

configuration for your machine by pressing the Select… button under Machine.

Deposition Capabilities and Post Processors 10-269

 CAM Post Processor Guide 8/8/23

Defining an Additive Setup

If you have not already assigned a post processor to this machine you will need to do so now. Do this

by pressing the Edit… button under the Machine prompt. The Machine Configuration will display,

select the Post Processing menu, press the … button and then select the Deposition sample post

processor.

Associating a Post Processor to a Machine Configuration

Feel free to rename the new setup to Deposition so you know that this is a deposition operation. If you

are going to do both deposition and subtractive operations in the same model, then you will want to

move the Deposition setup above the Subtractive setup.

Deposition Capabilities and Post Processors 10-270

 CAM Post Processor Guide 8/8/23

10.1.3 Creating and Simulating a Deposition Operation

The Deposition operation in Fusion 360 is named Feature Construction and is located in the MULTI-

AXIS pulldown.

Creating a Deposition Operation

A proper tool should be selected for depositing the material. Fusion 360 supports Electric Arc Wire,

Laser Powder, and Laser Wire Deposition tools. If you don’t already have deposition tools defined, you

can create one using the normal method for creating a tool by pressing the + menu in the Select Tool

form.

Selecting/Defining a Deposition Tool

You will need to select the base the Feature being built lies on and the Feature itself. You can also

generate multi-axis deposition moves by specifying a Forward Tilt and/or a Sideways Tilt.

Deposition Capabilities and Post Processors 10-271

 CAM Post Processor Guide 8/8/23

For this exercise you can select the bottom surface of the keychain as the Base and the body of the

keychain as the Feature. The remaining tabs/fields in the Feature Construction form are similar to other

milling operations.

Selecting/Defining the Base Plane and Body for Deposition

To simulate the Deposition toolpath press the Simulate button in the ACTIONS menus. Deposition

toolpaths simulate in the same manner as Subtractive toolpaths, but it is recommended that you place the

cursor over the green slide bar at the bottom of the window, hold down the left mouse button, and move

the mouse to the left and right to visualize the Deposition process.

Deposition Capabilities and Post Processors 10-272

 CAM Post Processor Guide 8/8/23

Simulating the Deposition Toolpath

10.2 The Deposition Sample Post Processor

Unlike additive post processors, which are standalone and created for a specific machine, deposition

capabilities are typically added to existing subtractive post processors for machines that support both

subtractive and deposition operations. The Deposition Sample Post Processor contains the basic

deposition functionality that can be added to a subtractive post. It is designed so that you can easily

copy the required code from this post processor into a post processor that you want to add deposition

capabilities to. In itself, it does not create a valid NC program for any machine.

The sample deposition post processor is broken up into separate sections, the first being code that will be

placed into existing functions, new code to be added to your post processor, and code that is common to

all other post processors used to create the sample output.

10.3 Deposition Specific Functions

You can start the modification of your post processor by copying the deposition specific functions into

your post processor. This code is marked in the sample post processor as follows.

// Start of Deposition logic

...

// End of Deposition logic
Copy this Code to Your Post Processor

https://cam.autodesk.com/hsmposts?p=generic_deposition

Deposition Capabilities and Post Processors 10-273

 CAM Post Processor Guide 8/8/23

The following table describes the functions included in the deposition code that is being copied to your

post.

Function Description Requires Editing

setDepositionCommands() Enable to keep deposition on during

transition moves, or disable it to turn

deposition off.

Yes

getProcessParameters() Processes the deposition parameters and

properties related to deposition

operations and stores them in the

processParameters object for use in

other functions.

No

writeDepositionHeader(tool) Writes out a header containing the

deposition settings per operation.

Maybe

writeProcessEquipmentCommands

(activate)

Writes out the commands to turn

deposition on or off as defined in the

setDepositionCommands function.

No

onLayer(index) Entry function called when a new layer

is started. index specifies the layer. 0 is

the first layer, 1 the second, etc.

Maybe

onLayerEnd(index) Entry function called when the current

layer is completed.

Maybe

onMovemeentDeposition(movement) Called from the onMovement function.

It turns on or off the depending on the

movement type.

No

Deposition Specific Functions

10.3.1 Deposition Common Properties

The deposition functions have properties that are common between most depositing machines. These

properties are listed in the following table.

Title Property Description

Deposit during transitions depositOnTransitions Enable to keep deposition on during transition

moves, or disable it to turn deposition off.
Common Deposition Properties

10.3.2 Deposition Commands

The commands to control the deposition operations are defined in the setDepositionCommands function

and will need to be edited to output the correct codes for your machine. It contains the commands to

turn on and off the process equipment for Electric Arc Wire, Laser Powder, and Laser Wire tools.

 case TOOL_DEPOSITING_ELECTRIC_ARC_WIRE:

Deposition Capabilities and Post Processors 10-274

 CAM Post Processor Guide 8/8/23

 // insert startup codes for electric arc wire here

 commands = {

 deposition : {on:mFormat.format(101), off:mFormat.format(103)},

 processEquipment: {

 on: [// commands to turn on process equipment

 formatWords(gFormat.format(90), formatComment("ABSOLUTE MODE")),

 formatWords(gFormat.format(300), "F" + processParameter.gasFlowRate,

 formatComment("SHIELD GAS FLOW RATE")),

 formatWords(gFormat.format(301), "V" + processParameter.arcCurrent,

 formatComment("ARC VOLTAGE")),

 formatWords(gFormat.format(302), "A" + processParameter.arcVoltage,

 formatComment("ARC CURRENT")),

 formatWords(gFormat.format(303), "S" + processParameter.wireSpeed,

 formatComment("WIRE SPEED")),

 formatWords(mFormat.format(304), formatComment("PROCESS ON"))],

 off: [// commands to turn off process equipment

 formatWords(mFormat.format(305), formatComment("PROCESS OFF")),

 formatWords(gFormat.format(303), "S0", formatComment("WIRE STOP")),

 formatWords(gFormat.format(300), "F0000", formatComment("GAS OFF"))]

 }

 };

 break;
Commands to Turn On and Off Deposition

10.3.3 Modifying Existing Functions to Support Deposition

After copying the deposition specific code and making the needed modifications you will need to

modify existing functions in your post processor to support deposition operations.

Function Modification

onSection Add code to define the deposition commands, write the deposition

operation head, and enable the deposition operation.

onSectionEnd Add code to disable the deposition operation.

onMovement Add a call to onMovementDeposition for a deposition operation.
Modification of Existing Functions for Deposition Support

function onSection() {

 // #### Add the code below into the onSection function of your postprocessor ####

 if (isDepositionOperation()) {

 setDepositionCommands(); // setup for deposition process parameters

 writeDepositionHeader(tool);

 writeProcessEquipmentCommands(true);

 }

 // Important note, make sure that you disable the spindle speed output for deposition

 // operations in your postprocessor.

Deposition Capabilities and Post Processors 10-275

 CAM Post Processor Guide 8/8/23

}
Enable a Deposition Operation in onSection

function onSectionEnd() {

 // #### Add the code below into the onSectionEnd function of your postprocessor ####

 if (isDepositionOperation()) {

 writeProcessEquipmentCommands(false);

 }

}
Disable a Deposition Operation in onSectionEnd

// #### If your postprocessor does not have the onMovement function, you have to add the

// entire function below. ####

function onMovement(movement) {

 // #### Add the code below into the onMovement function of your postprocessor. ####

 if (isDepositionOperation()) {

 onMovementDeposition(movement);

 }

}
Call onMovementDeposition from onMovement

Index

Index 276
Autodesk CAM Post Processor Guide 8/8/23

?

? conditional....................................... 3-65

3

3+2 operations 3-56

A

accuracy ... 6-187

Action ... 5-180

activateMachine1-13, 4-117, 7-189, 7-194, 7-202

activatePolarMode 7-215

Additive................ 9-239, 10-266, 10-268

Additive operation 9-246

allowedCircularPlanes 4-75, 4-155

allowHelicalMoves.... 4-75, 4-155, 4-157

allowSpiralMoves 4-75, 4-155, 4-157

approach ... 8-225

areDifferent .. 4-87

argument 3-71, 3-72

array 3-51, 3-53, 3-72

Array Object Functions 3-52

Autodesk Fusion 360 Post Processor Utility 2-23

B

bedTemp .. 9-250

Benchmark parts 1-17

Benchmark Parts...................... 2-40, 2-44

bookmarks 2-34, 2-35

booleans ... 3-51

break ... 3-64, 3-70

Built-in properties.............................. 4-79

C

CAM partners 1-16

capabilities 4-75, 9-254

CAPABILITY_ADDITIVE 9-254

case ... 3-64

case sensitive 3-45

certificationLevel............................... 4-75

checkGroup 4-132

circular interpolation 4-153, 4-154

circular plane 4-75, 4-155

clearance plane4-172

clockwise 4-153, 9-263

CNC Handbook 1-1

collected state 4-99

commands 9-250, 9-251

comment 3-46, 4-137

compensateToolLength7-190

conditional function 3-66

conditional statements 3-63

continue .. 3-70

coolant ..4-112

coolants...4-112

createAxis 7-190, 7-199, 7-206

createFormat 4-86, 4-89, 4-90, 7-189

createIncrementalVariable 4-94

createModal.. 4-94

createModalGroup 4-95

createOutputVariable............. 4-90, 7-199

createReferenceVariable 4-94

createVariable 4-94, 7-189

currentSection4-126

cycle 4-159, 4-160, 8-235

Cycle parameters4-163

Cycle planes/heights4-164

cycleType 4-161, 8-223, 8-232

cyclic 7-199, 7-206

D

Date...4-102

deactivatePolarMode7-215

debug 2-40, 4-169, 6-185, 6-187

Debugging ..6-184

debugMode........................... 6-185, 6-187

default ... 3-64

Deferred variables.............................. 3-59

DeferredVariables 3-59

defineMachine7-190

defineWorkPlane 4-117, 4-123

degrees ..7-189

Degrees Per Minute7-209

Deposition10-265

description .. 4-75

Diameter Offset4-110

disable ... 4-92

Index

Index 277
Autodesk CAM Post Processor Guide 8/8/23

do/while.. 3-70

doesToolPathFitWithinLimits 4-121

download a post 1-3

drilling cycles 7-219

drillingSafeDistance 4-162

dump.cps 4-140, 5-180, 6-184

E

editor1-8, 1-11, 2-23

else .. 3-63

enableMachineRewinds 7-193

entry function 6-184

Entry functions 4-73, 9-253

Euler ... 4-123

Euler Angle Order 4-117

Euler angles 4-116

eulerConvention 4-116

executeManualNC 5-178

executeTempTowerFeatures 9-264

expanded cycles 4-160, 4-162

expandManualNC 5-175

expression 3-61, 3-66, 3-68, 3-73

expression operators 3-62

extension .. 4-75

Extruder................................ 9-250, 9-251

F

Feature Construction 10-265, 10-270

Feedrate 4-153, 9-263

fixed settings 4-98, 4-99

for 3-68, 3-69, 3-70

Force tool change 4-110

forceABC ... 4-171

forceAny .. 4-171

forceFeed.. 4-171

forceMultiAxisIndexing 4-116

forceXYZ ... 4-171

format 4-86, 4-87, 4-90, 4-92, 4-95, 4-97

formatComment 4-138

FormatNumber......................... 4-87, 4-90

function 3-47, 3-66, 3-71, 3-72

fused filament fabrication 9-239

G

G-code .. 1-1

Geometry Probing 8-231

getABCByPreference 4-119, 7-198

getCircularCenter.............................4-156

getCircularChordLength4-156

getCircularNormal4-156

getCircularPlane4-156

getCircularRadius4-156

getCircularStartRadius4-156

getCircularSweep.............................4-156

getCommonCycle 4-166, 7-219

getCoolantCodes 4-113, 8-230

getCurrent... 4-92

getCurrentDirection 4-119, 7-198

getCurrentPosition4-156

getEuler2 4-117, 4-123

getExtruder 9-251, 9-264

getFinalToolAxisABC7-198

getFirstTool 4-111, 4-132

getFramePosition4-125

getGlobalFinalToolAxis7-198

getGlobalInitialToolAxis7-198

getGlobalParameter4-141

getGlobalZRange4-103

getHeaderDate4-102

getHeaderVersion4-102

getHelicalDistance4-156

getHelicalOffset4-156

getHelicalPitch 4-156, 4-157

getId ..4-127

getInitialToolAxisABC 7-196, 7-198

getLinearMoveLength 7-213, 7-215

getMinimumValue 4-88

getMultiAxisMoveLength7-212

getNextSection4-133

getNextTool 4-111, 4-131

getNumberOfSections4-103, 4-105, 4-127, 4-

141

getNumberOfTools4-103

getOptimizedPosition7-202

getOptimizedTCPMode7-198

getParameter4-140

getPolarPosition7-215

getPositionU 4-156, 4-158

getProbingArguments8-225

getProperty............................... 4-81, 4-85

getRadialMoveLength7-213

getRadialToolTipMoveLength7-213

Index

Index 278
Autodesk CAM Post Processor Guide 8/8/23

getResultingValue 3-68, 4-88, 4-92

getSection..... 4-103, 4-105, 4-126, 4-141

getTool ... 4-105

getToolTypeName 4-103

getWorkPlaneMachineABC 4-118, 4-123

gFeedModeModal 7-211

Global Section 4-74, 9-254

global variable 3-47, 4-74, 4-99

gRotationModal 8-227

groupDefinitions 4-80, 4-83

H

hasGlobalParameter 4-141

hasParameter 4-140

helical interpolation 4-156, 4-157

helical move 4-75

high feedrate 4-145, 4-149

highFeedMapping 4-75

highFeedrate 4-75

home position 4-172

HSM Post Processor Editor 3-46

I

if 3-63, 3-65

incremental... 4-94

indentation ... 3-46

Initial Position...................... 4-110, 4-125

insertToolCall 4-110, 4-133

Inspect Surface 8-234

intermediate file 1-1, 9-253

Inverse Time 7-209, 7-215

inverseTimeOutput 7-211

invokeOnCircular 4-159

invokeOnLinear 4-148

invokeOnLinear5D 4-152

invokeOnRapid 4-147

invokeOnRapid5D 4-150

is3D .. 7-198

isAdditive ... 9-264

isAxialCenterDrilling 4-129

isDepositionOperation 4-131

isDrillingCycle 4-128

isFirstCyclePoint 4-166

isFullCircle....................................... 4-156

isHelical ... 4-157

isInspectionOperation 4-130

isLastCyclePoint4-166

isLastSection4-133

isMillingCycle4-130

isMultiAxis.......................................4-123

isMultiAxisConfiguration ... 4-123, 7-198

isNewWorkOffset4-128

isNewWorkPlane 4-107, 4-128

isOptimizedForMachine 7-196, 7-198

isPolarModeActive7-215

isProbeOperation4-130

isProbingCycle4-166

isSignificant 4-88

isSpindleSpeedDifferent4-128

isSpiral ..4-157

isTappingCycle4-129

isToolChangeNeeded 4-107, 4-127

J

JavaScript ... 3-45

K

kernel settings 4-75

L

Laser ... 1-22

layerCount ..9-250

legal .. 4-75

Length Offset4-110

linear scale..7-199

linearize ..4-157

linked folders 9-241, 10-268

local variables 3-47

log ...6-187

longDescription................................4-102

looping statements 3-68

M

machine configuration7-189

Machine Configuration1-13, 4-82, 7-190, 9-240,

9-248, 10-266

machineConfiguration4-102, 4-103, 9-250

machining plane4-159

Manual NC5-180

Manual NC command4-99, 4-134, 4-136, 4-137,

4-139, 4-140

Index

Index 279
Autodesk CAM Post Processor Guide 8/8/23

Manual NC Command 5-174

mapToWCS 4-75

mapWorkOrigin 4-76

Math Object 3-49

Matrix ... 3-56

Matrix Object Assignments 3-56

Matrix Object Attributes 3-57

Matrix Object Functions 3-58

matrixes .. 6-186

maximumCircularRadius 4-76, 4-155

maximumCircularSweep4-76, 4-99, 4-155

mill/turn.. 1-20

milling .. 1-19

minimumChordLength 4-76, 4-155

minimumCircularRadius 4-76, 4-155

minimumCircularSweep 4-76, 4-155

minimumRevision 4-76

Modal Groups 4-95

ModalGroup 4-96

model origin 4-75

MoveLength 7-213

movement... 4-145

moveToSafeRetractPosition 7-208

multi-axis1-16, 3-56, 4-149, 4-151, 7-188

multi-axis ... 4-100

Multi-Axis Feedrates 7-209, 7-213

N

NC file extension 4-75

NC Program 1-11, 4-77

next tool ... 4-111

number 3-48, 3-72

Number Objects 3-48

numberOfExtruders 9-250

O

object .. 3-53, 3-72

offset tables and heads 7-199

onAcceleration 9-259

onBedTemp...................................... 9-257

onchange .. 4-91

onCircular 4-143, 4-153, 4-159

onCircularExtrude 9-263

onClose..................... 4-134, 4-135, 9-256

onCommand4-136, 4-143, 4-162, 5-176, 5-179

onComment.............. 4-137, 5-176, 6-188

onCycle...4-159

onCycleEnd 4-168, 8-227

onCyclePoint4-160, 7-219, 8-223, 8-226, 8-235

onDwell 4-139, 5-176

onExtruderChange9-258

onExtruderTemp9-257

onExtrusionReset9-258

onFanSpeed9-259

onImpliedCommand 4-135, 4-137

onJerk ...9-260

onLayer...9-261

onLinear 4-143, 4-146, 4-147, 4-148

onLinear5D4-151, 4-153, 7-196, 7-211, 7-219

onLinearExtrude9-262

onManualNC 5-175, 5-177, 5-178

onMaxAcceleration9-260

onMovement4-145

onMoveToSafeRetractPosition7-207

onOpen 4-99, 7-189, 9-255

onOrientateSpindle4-143

onParameter4-139, 4-142, 5-176, 5-180, 8-228,

9-261

onPassThrough..................... 5-177, 5-183

onRadiusCompensation4-143

onRapid 4-143, 4-145, 4-147, 9-262

onRapid5D ... 4-149, 4-150, 7-196, 7-219

onReturnFromSafeRetractPosition .7-207

onRewindMachine4-169

onRewindMachineEntry7-207

onRotateAxes7-207

onSection 4-106, 4-134, 9-255

onSectionEnd4-107, 4-108, 4-133, 4-134, 8-230

onSpindleSpeed4-143

onTerminate4-135

Operation Comment4-108

Operation Notes 4-109

Operation properties 4-82

Operation Properties 1-13

operators ... 3-61

optimize3DPositionsByMachine4-122

optimizeMachineAngles27-194

optimizeMachineAnglesByMachine7-194

optional skip4-169

output units ... 4-76

OutputVariable......................... 4-90, 4-91

Index

Index 280
Autodesk CAM Post Processor Guide 8/8/23

P

parametric feedrates 4-145

parseFloat ... 3-49

parseInt ... 3-49

partCount.. 9-250

pendingRadiusCompensation 4-144

permittedCommentChars 4-138

pivot point .. 7-200

Plasma .. 1-22

Polar interpolation 7-213

polarDirection 7-216

post kernel .. 3-47

Post Library ... 1-2

post processor2-40, 9-240, 9-244, 9-249, 10-

267, 10-269

post processor documentation 3-45

Post Processor Forum................ 1-2, 1-16

Post Processor Ideas 1-2, 1-16

Post Properties 2-41

preloadTool 4-111

Print Settings............ 9-240, 9-244, 9-254

printTime.. 9-250

probeMultipleFeatures 8-233

probeWorkOffset 4-131

Probing1-22, 8-220, 8-231, 8-234

program comment............................ 4-100

program name 1-8, 1-11, 4-76, 4-100

programComment 4-101

programName 4-101

programNameIsInteger 4-76, 4-100

properties............... 1-9, 1-11, 4-79, 9-249

Property Table 3-53, 4-77, 4-98, 4-99

protecedProbeMove 8-225

R

radians 3-49, 7-189

radius compensation4-145, 4-147, 4-151, 4-153

range 7-199, 7-206

rapid .. 4-75

real value .. 3-68

repositionToCycleClearance........... 4-166

retract.................................... 4-108, 4-125

return .. 3-71, 3-72

rotary axes .. 7-189

Rotary Axis Order 7-191

rotary scale 7-199

RS-274D Sample Multi-axis Post Processor 7-

188

S

section ...4-126

seed post ... 1-17

sequence number4-169

setCoolant...4-113

setCurrentABC.................................7-198

setCurrentPositionAndDirection.....7-215

setMachineConfiguration7-194

setMultiAxisFeedrate7-193

setPolarFeedMode7-216

setPolarMode7-215

setPrefix .. 4-97

setProbeAngle8-225

setProbeAngleMethod8-225

setProperty ... 4-85

setSingularity7-204

setSuffix ... 4-97

settings 9-250, 9-252

setToolLength7-201

setup 4-142, 9-243, 10-268

setVirtualTooltip 7-192, 7-202

setWordSeparator 4-100, 4-169

setWorkPlane4-123

setWriteInvocations 2-41, 6-185

setWriteStack 2-41, 6-186

showNotes 4-104, 4-109

simulate 9-247, 10-271

singleLineCoolant4-112

singularity...7-203

spatial.. 3-49

spindle codes4-112

spindleOrientation4-162

spindleSpeedDwell4-162

spiral interpolation4-157

spiral move ... 4-75

stock transfer 1-21

strategy 4-83, 4-132, 4-133

string 3-46, 3-49, 3-72

String Object Functions 3-50

switch.. 3-64, 3-70

T

tapping cycles4-167

Index

Index 281
Autodesk CAM Post Processor Guide 8/8/23

TCP... 7-209

Template .. 5-183

toDeg .. 3-49

tolerance 4-76, 4-155, 4-157

tool axis 4-149, 4-151, 7-203

Tool change 4-110

tool length offset 4-125

toolZrange .. 4-132

toolZRange....................................... 4-111

toPreciseUnit.......................... 3-49, 4-170

toRad .. 3-49

toUnit.. 3-49

try/catch.. 3-67

typeof.. 3-66

U

undefined.. 3-47

unit 1-8, 1-11, 4-100, 4-106

useABCPrepositioning 4-116

useMultiAxisFeatures 4-116

usePolarMode 7-216

User Settings 2-26

V

validate ... 3-67

var ... 3-47

variable 3-47, 3-61, 3-66, 3-71, 9-250

Vector ... 3-53

Vector Attributes 3-54

Vector Object Functions 3-55

vectors ..6-186

virtual tool tip...................................7-202

Visual Studio Code 2-23

W

Waterjet .. 1-22

WCS 4-75, 4-113, 4-133

WCS Probing8-221

wcsDefinitions4-113

while ... 3-69

Work Coordinate System4-107, 4-113, 8-221

Work Plane4-76, 4-107, 4-115, 4-118, 4-123, 4-

133

workOffset4-106

writeBlock ..4-169

writeComment4-101, 4-102, 4-103, 4-138, 6-

188

writeDebug6-188

writeln 4-169, 6-187

writeNotes 4-104, 4-140

writeRetract .. 4-107, 4-135, 4-172, 7-193

writeSectionNotes4-109

writeSetupNotes4-104

	1 Introduction to Post Processors
	1.1 Scope
	1.2 What is a Post Processor?
	1.3 Finding a Post Processor
	1.4 Downloading and Installing a Post Processor
	1.4.1 Automatically Updating Your Post Processors

	1.5 Running the Post Processor
	1.5.1 Post Process Dialog
	1.5.2 NC Programs
	1.5.3 Machine Configurations

	1.6 Creating/Modifying a Post Processor
	1.7 Testing your Post Processor – Benchmark Parts
	1.7.1 Locating the Benchmark Parts
	1.7.2 Milling Benchmark Part
	1.7.3 Mill/Turn Benchmark Part
	1.7.4 Stock Transfer Benchmark Part
	1.7.5 Probing Benchmark Part

	2 Autodesk Post Processor Editor
	2.1 Installing the Autodesk Post Processor Editor
	2.2 Autodesk Post Processor Settings
	2.3 Left Side Flyout
	2.3.1 Explorer Flyout
	2.3.2 Search Flyout
	2.3.3 Bookmarks Flyout
	2.3.4 Extensions Flyout

	2.4 Autodesk Post Processor Editor Features
	2.4.1 Auto Completion
	2.4.2 Syntax Checking
	2.4.3 Hiding Sections of Code
	2.4.4 Matching Brackets
	2.4.5 Go to Line Number
	2.4.6 Opening a File in a Separate Window
	2.4.7 Shortcut Keys
	2.4.8 Running Commands

	2.5 Running/Debugging the Post
	2.5.1 Autodesk Post Processor Commands
	2.5.2 The Post Processor Properties
	2.5.3 Running the Post Processor
	2.5.4 Creating Your Own CNC Intermediate Files

	3 JavaScript Overview
	3.1 Overview
	3.2 JavaScript Syntax
	3.3 Variables
	3.3.1 Numbers
	3.3.2 Strings
	3.3.3 Booleans
	3.3.4 Arrays
	3.3.5 Objects
	3.3.6 The Vector Object
	3.3.7 The Matrix Object
	3.3.8 Deferred Variables

	3.4 Expressions
	3.5 Conditional Statements
	3.5.1 The if Statement
	3.5.2 The switch Statement
	3.5.3 The Conditional Operator (?)
	3.5.4 The typeof Operator
	3.5.5 The conditional Function
	3.5.6 try / catch
	3.5.7 The validate Function
	3.5.8 Comparing Real Values

	3.6 Looping Statements
	3.6.1 The for Loop
	3.6.2 The for/in Loop
	3.6.3 The while Loop
	3.6.4 The do/while Loop
	3.6.5 The break Statement
	3.6.6 The continue Statement

	3.7 Functions
	3.7.1 The function Statement
	3.7.2 Calling a function
	3.7.3 The return Statement

	4 Entry Functions
	4.1 Global Section
	4.1.1 Kernel Settings
	4.1.2 Property Table
	4.1.3 Property Scopes
	4.1.4 Operation Properties
	4.1.5 Property Groups
	4.1.6 Accessing Properties
	4.1.7 Format Definitions
	4.1.8 Deprecated Format Specifiers
	4.1.9 Output Variable Definitions
	4.1.10 Deprecated Output Variable Definitions
	4.1.11 Modal Groups
	4.1.12 Fixed Settings
	4.1.13 Collected State

	4.2 onOpen
	4.2.1 Define Settings Based on Post Properties
	4.2.2 Define the Multi-Axis Configuration
	4.2.3 Output Program Name and Header
	4.2.4 Performing General Checks
	4.2.5 Output Initial Startup Codes

	4.3 onSection
	4.3.1 Ending the Previous Operation
	4.3.2 Operation Comments and Notes
	4.3.3 Tool Change
	4.3.4 Work Coordinate System Offsets
	4.3.5 Work Plane – 3+2 Operations
	4.3.6 Initial Position

	4.4 The section Object
	4.4.1 currentSection
	4.4.2 getSection
	4.4.3 getNumberOfSections
	4.4.4 getId
	4.4.5 isToolChangeNeeded
	4.4.6 isNewWorkPlane
	4.4.7 isNewWorkOffset
	4.4.8 isSpindleSpeedDifferent
	4.4.9 isDrillingCycle
	4.4.10 isTappingCycle
	4.4.11 isAxialCenterDrilling
	4.4.12 isMillingCycle
	4.4.13 isProbeOperation
	4.4.14 isInspectionOperation
	4.4.15 isDepositionOperation
	4.4.16 probeWorkOffset
	4.4.17 getNextTool
	4.4.18 getFirstTool
	4.4.19 toolZRange
	4.4.20 strategy
	4.4.21 checkGroup

	4.5 onSectionEnd
	4.6 onClose
	4.7 onTerminate
	4.8 onCommand
	4.9 onComment
	4.10 onDwell
	4.11 onParameter
	4.11.1 getParameter Function
	4.11.2 getGlobalParameter Function

	4.12 onPassThrough
	4.13 onSpindleSpeed
	4.14 onOrientateSpindle
	4.15 onRadiusCompensation
	4.16 onMovement
	4.17 onRapid
	4.18 invokeOnRapid
	4.19 onLinear
	4.20 invokeOnLinear
	4.21 onRapid5D
	4.22 invokeOnRapid5D
	4.23 onLinear5D
	4.24 invokeOnLinear5D
	4.25 onCircular
	4.25.1 Circular Interpolation Settings
	4.25.2 Circular Interpolation Common Functions
	4.25.3 Helical Interpolation
	4.25.4 Spiral Interpolation
	4.25.5 3-D Circular Interpolation

	4.26 invokeOnCircular
	4.27 onCycle
	4.28 onCyclePoint
	4.28.1 Drilling Cycle Types
	4.28.2 Cycle parameters
	4.28.3 The Cycle Planes/Heights
	4.28.4 Common Cycle Functions
	4.28.5 Pitch Output with Tapping Cycles

	4.29 onCycleEnd
	4.30 onRewindMachine
	4.31 Common Functions
	4.31.1 writeln
	4.31.2 writeBlock
	4.31.3 toPreciseUnit
	4.31.4 force---
	4.31.5 writeRetract

	5 Manual NC Commands
	5.1 onManualNC and expandManualNC
	5.1.1 Sample onManualNC Function
	5.1.2 Delay Processing of Manual NC Commands

	5.2 onCommand
	5.3 onParameter
	5.4 onPassThrough

	6 Debugging
	6.1 Overview
	6.2 The dump.cps Post Processor
	6.3 Debugging using Post Processor Settings
	6.3.1 debugMode
	6.3.2 setWriteInvocations
	6.3.3 setWriteStack

	6.4 Functions used with Debugging
	6.4.1 debug
	6.4.2 log
	6.4.3 writeln
	6.4.4 writeComment
	6.4.5 writeDebug

	7 Multi-Axis Post Processors
	7.1 Adding Basic Multi-Axis Capabilities
	7.1.1 Create the Rotary Axes Formats
	7.1.2 The Machine Configuration Settings and Functions
	7.1.3 Creating a Hardcoded Multi-Axis Machine Configuration
	7.1.4 Calculating the Rotary Angles
	7.1.5 Output Initial Rotary Position
	7.1.6 Create the onRapid5D and onLinear5D Functions
	7.1.7 Multi-Axis Common Functions

	7.2 Output of Continuous Rotary Axis on a Rotary Scale
	7.3 Adjusting the Points for Offset Rotary Axes
	7.4 Calculation of the Multi-Axis Tool Position
	7.5 Handling the Singularity Issue in the Post Processor
	7.6 Rewinding of the Rotary Axes when Limits are Reached
	7.7 Multi-Axis Feedrates
	7.8 Polar Interpolation
	7.8.1 Polar Interpolation Functions
	7.8.2 Manual NC Command to Enable Polar Interpolation
	7.8.3 Calculating the Polar Interpolation Initial Angle
	7.8.4 Initializing Polar Interpolation
	7.8.5 Disabling Polar Interpolation
	7.8.6 Enabling Polar Interpolation in Drilling Cycles

	8 Adding Support for Probing
	8.1 WCS Probing
	8.1.1 Probing Operations
	8.1.2 Adding the Core Probing Logic
	8.1.3 Adding the Supporting Probing Logic
	8.1.4 Adding Support for Printing Probe Results

	8.2 Geometry Probing
	8.3 Inspect Surface
	8.3.1 Inspect Surface Operations
	8.3.2 Inspection Parameters
	8.3.3 Adding the Core Inspect Surface Logic
	8.3.4 Adding the Supporting Inspect Surface Logic

	9 Additive Capabilities and Post Processors
	9.1 Getting Started
	9.1.1 Finding a Machine
	9.1.2 Creating an Additive Setup
	9.1.3 Creating and Simulating an Additive Operation

	9.2 Creating a New Machine Configuration
	9.3 Additive Common Properties
	9.4 Additive Variables
	9.4.1 The machineConfiguration Object
	9.4.2 The Extruder Object
	9.4.3 The commands Object
	9.4.4 The settings Object

	9.5 Additive Entry Functions
	9.5.1 Global Section
	9.5.2 onOpen
	9.5.3 onSection
	9.5.4 onClose
	9.5.5 onBedTemp
	9.5.6 onExtruderTemp
	9.5.7 onExtruderChange
	9.5.8 onExtrusionReset
	9.5.9 onFanSpeed
	9.5.10 onAcceleration
	9.5.11 onMaxAcceleration
	9.5.12 onJerk
	9.5.13 onLayer
	9.5.14 onParameter
	9.5.15 onRapid
	9.5.16 onLinearExtrude
	9.5.17 onCircularExtrude

	9.6 Common Additive Functions
	9.6.1 getExtruder
	9.6.2 isAdditive
	9.6.3 executeTempTowerFeatures

	10 Deposition Capabilities and Post Processors
	10.1 Getting Started
	10.1.1 Finding a Machine
	10.1.2 Creating an Additive Setup for Deposition
	10.1.3 Creating and Simulating a Deposition Operation

	10.2 The Deposition Sample Post Processor
	10.3 Deposition Specific Functions
	10.3.1 Deposition Common Properties
	10.3.2 Deposition Commands
	10.3.3 Modifying Existing Functions to Support Deposition

